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Summary

The statistical science as well as the pharmaceutical industry are continuously evolv-
ing due to many factors including advances in theory, treatments, technology, ways of
monitoring etc. This PhD was particularly motivated by the concepts of Real World
Data (RWD) and Real World Evidence (RWE). These concepts have been scrutinized
for many reasons, such as the enormous amount of data in existence now and espe-
cially in the future due to the development of medical devices that can record enormous
amounts of data all the time. This dissertation aims at improving existing methods
applied to such data. The general idea explored is to use designs where time-stable con-
founding is adjusted for implicitly, for example by comparing subjects to themselves. In
Manuscript I, we highlight a concrete problem in the case-time-control design, and how
to sample controls in order to alleviate it. In Manuscript III, we propose a novel way
of adjusting for time-stable confounding without having to switch to a self-controlled
design. This enables the use of standard types of models for time-to-event data while
not having to fear bias due to confounding by time-stable confounding.

Developments in the causal inference literature, and an increased focus on what
we want to estimate and what our research question really is, has also reached the
pharmaceutical industry with the estimand framework.

The influence of the estimand framework on this PhD is clear in Manuscript II,
where we show how a whole class of working models can lead to unbiased estimation
of causal effect under arbitrary misspecification of the working model in crossover
trials. This robustness, however, comes with the caveat that the variance has to be
estimated from the so-called influence function in order to be completely robust towards
misspecification. The estimand framework also shines through clearly in Manuscript
III, where a causal effect is targeted despite unmeasured confounding.

All in all, this PhD has made contributions to the major developments in the
industry along with research relevant both for RWD (Manuscripts I and III) and in
clinical development (Manuscript II).

In this dissertation, I will introduce the currently used methods for the analysis of
RWD and causal inference. This will give an overview of the literature and field to
which the manuscripts from this PhD belong.
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Resumé

Statistik som videnskab s̊avel som farma industrien udvikler sig kontinuerligt af mange
årsager s̊asom udvikling i teori, behandlinger, teknologi, monitorering osv. Denne PhD
var særligt motiveret af koncepterne Real World Data (RWD) og Real World Evidence
(RWE). Disse emner er blevet gransket af mange årsager, s̊asom den enorme mængde
data, der eksisterer i dag og i særlig grad i fremtiden pga. udviklingen af medicinske
apparater, der kan m̊ale enorme mængder data hele tiden. Denne afhandling forsøger
at forbedre eksisterende metoder til at analysere den slags data. Den overordnede idé,
der er udforsket, er at bruge designs, hvor tidsstabil konfounding implicit er justeret
for, f.eks. ved at sammenligne folk med dem selv. I det første manuskript belyser
vi et konkret problem i case-time-control designet, samt hvordan man skal sample
kontroller for at undg̊a det. I det tredje manuskript foresl̊ar vi en metode til at justere
for tidsstabil konfounding uden at være nødt til at skifte til et selv-kontrolleret design.
Dette gør det muligt at bruge standard modeller til overlevelsesanalysedata uden, at
man bør frygte bias som følge af tidsstabil konfounding.

Udvikling i kausal inferens litteraturen og et øget fokus p̊a, hvad vi estimerer samt
hvad vores forskningsspørgsm̊al faktisk er n̊aede ogs̊a til farmaindustrien med estimand
frameworket.

Indflydelsen fra estimand frameworket p̊a denne PhD er tydeligt i det andet manuskript,
hvor vi viser, hvordan en hel klasse af modeller kan før til unbiased estimation af kausale
effekter i cross-over studier uanset, hvor misspecificeret modellen er. Denne robusthed
kommer dog med det forbehold, at variansen skal estimeres ud fra den s̊akaldte influ-
ence funktion for at være helt robust overfor misspecifikation af modellen. Estimand
frameworket skinder ogs̊a tydeligt igennem i det tredje manuskript, hvor en kausal
effekt bliver søgt til trods for unmeasured konfounding.

Alt i alt har denne PhD bidraget til de store udviklinger i industrien s̊avel som med
forskning relevant for b̊ade RWD og i den kliniske udvikling.

I denne afhandling vil jeg introducere de gængse metoder for analysen af RWD og
kausal inferens. Dette vil give et overblik over litteraturen og det felt som manuskripterne
i denne PhD tilhører.
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1 Industrial context for the PhD

This industrial PhD was motivated by current developments within the pharmaceutical
industry and the challenges they pose for established statistical methodology. In this
section, I will describe these developments and put them into a statistical framework to
show the relevance and importance of the statistical problems addressed in this PhD,
and how they relate to the problems of the pharmaceutical industry. The two main
developments in the industry during my PhD have been:

• Real World Data (RWD) and Real World Evidence (RWE)

• The estimand framework

The main problem for the use of RWD and RWE from a statistical point of view, as
we will see later in the dissertation, is the problem of confounding. This problem,
along with standard ways to handle it and potential alternative ways of handling it,
will be covered extensively in this dissertation. However, a disclaimer is warranted
at this stage: no method or solution is perfect, but depends on specific assumptions
that may be more or less realistic depending on the context. This is an active area of
research, and more research will probably be necessary as long as technology and data
sources develop and change. In particular, Manuscripts I and III of this dissertation
are a part of this process of incrementally making the scientific community and the
pharmaceutical sector better at handling this problem. The estimand framework is
most directly related to the statistical field of causal inference. This field deals very
directly with the research question, i.e. what we really want to estimate. This might
also have been driven by technological and methodological developments in statistical
modelling, and is indeed a very active area of research. Causal inference methodology
is used extensively in Manuscripts II and III, but unfortunately we didn’t succeed in
applying the framework in a satisfactory way in Manuscript I for reasons covered later
in the dissertation. In the following sections, RWD, RWE and the estimand framework
will be described in detail, and the connection to statistical theory will be made explicit
so that the reader will know exactly what this PhD is all about.

1.1 Real world data (RWD) and real world

evidence (RWE)

The Randomized Controlled Trial (RCT) is considered the gold standard for regula-
tory drug approval, in part due to the fact that randomization ensures that treatment
groups are comparable in terms of prognostic factors (Byar et al., 1976). However,
there is an increasing amount of data, particularly from medical devices and adminis-
trative databases, that is not collected in the context of an RCT. These data can sup-
port authorities and pharmaceutical companies in regulatory decision-making. These
developments have led to the concepts of RWD and RWE. The US Food and Drug
Administration (FDA) defines RWD as ”data relating to patient health status and/or
the delivery of health care routinely collected from a variety of sources”, and RWE as

1



2 1. Industrial context for the PhD

”the clinical evidence regarding the usage, and potential benefits or risks, of a medical
product derived from analysis of RWD” (US Food and Drug Administration, 2017).

RWD and RWE is not just about using data because they exist. There are several
use cases where these data can help the industry and regulators answer questions
relating to the efficacy and safety of medicine, where the alternative would either be
infeasible or worse. We will go through some use-cases in the following (Franklin et al.,
2019).

External controls

External controls, that is a control group from outside the trial, can be used if a new
treatment is very promising, and no other satisfactory treatment exists. Especially if
the disease is severe, in which case it is perceived as unethical to randomize subjects
to placebo. Moreover, external controls could help if treatment is for a rare disease, in
which case it might be hard to get enough power in an RCT (Franklin and Schneeweiss,
2017). External controls can help in these contexts (US Department of Health and
Human Services (DHHS), US Food and Drug Administration (FDA), 2001). External
controls could for example be patients with the same indication as the indication for
the new drug, but who are or have been receiving either an older treatment or no
treatment.

Indication expansion

RCTs are often made in very specific populations with very specific, sometimes in-
termediate, outcomes. For example, we might be interested in the effect of a drug
on the risk of stroke. In that context, the drug might be approved because it lowers
blood pressure, which in turn should lower the risk of stroke. However, with RWD, we
may actually be able to measure the effect directly on stroke. RWD could also lead
to an estimate of the effect of treatment in a different population, such as patients in
a different disease stage or in pediatrics, if the RCT was with adults (Franklin et al.,
2019).

Post Authorization Safety Studies (PASS)

A PASS study is “any study relating to an authorized medicinal product conducted
with the aim of identifying, characterizing or quantifying a safety hazard, confirming
the safety profile of the medicinal product, or of measuring the effectiveness of risk
management measures.” (European Medicines Agency, 2017). That means, that PASS
studies are conducted after the drug has been approved to ensure safety of the approved
drug. PASS can be either clinical trials or non-interventional. A PASS is considered
non-interventional if “the medicine is prescribed in the usual way in accordance with
the terms of the marketing authorization”, if “the assignment of the patient to a
particular therapeutic strategy is not decided in advance by a trial protocol but falls
within current practice and the prescription of the medicine is clearly separated from
the decision to include the patient in the study” and “no additional diagnostic or
monitoring procedures are applied to the patients and epidemiological methods are
used for the analysis of collected data” (European Medicines Agency, 2017). In short,
the PASS has to use data that would exist even in the absence of the PASS. PASS
can be imposed by the authorities or voluntarily (European Medicines Agency, 2017).
A non-interventional PASS may be necessary, for example for investigating rare safety
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signals, in which case the required sample size for an RCT would be infeasible in terms
of resources (Franklin and Schneeweiss, 2017).

RWD and RWE from a statistical point of view

The issues relating to RWD and RWE are not new from a statistical point of view.
Arguably, they are classic problems in the field of pharmacoepidemiology. Many statis-
ticians and epidemiologists would probably call RWD for observational data, although
RWD arguably is a subset of observational data. Furthermore, RWE might simply be
interpreted as the results of observational studies. Statisticians and epidemiologists
are also well aware of the challenges related to the analysis of such data, in particular
the problem of confounding. Therefore, it might be tempting for some to dismiss the
ideas of RWD and RWE as industry hype. This is an understandable opinion with
some truth to it. Nevertheless, I hope statisticians and epidemiologists will see the
concepts of RWD and RWE as part of an industry development that makes statistical
theory and knowledge more relevant for the real world. In my opinion, the industry
needs statisticians and epidemiologists, and it would be incredibly valuable for the
movement if statisticians and epidemiologists see themselves as a part of it. I hope
this PhD can make the concepts more digestible for academics to the benefit of the
industry, regulators and at the end of the day to the benefit of patients.

The concepts of RWD and RWE were the original motivation for this PhD. How-
ever, these are not the only hot topics in the pharmaceutical industry. The estimand
framework came in the beginning of the PhD, and has had a major impact on how we
have approached this project (International Council for Harmonisation, 2019).

1.2 The estimand framework

The causal inference literature has increased the focus on what we are estimating in our
studies (Hernán, 2018; van der Laan and Rose, 2011). In the beginning of this PhD, this
reached the pharmaceutical industry in the estimand framework (International Council
for Harmonisation, 2019). The International Council for Harmonisation (2019) defines
an estimand as a “precise description of the treatment effect reflecting the clinical
question posed by a given clinical trial objective” with the following five attributes:

1. The treatment we want to quantify the effect of, and an alternative treatment
(possibly no treatment) we want to compare to.

2. The population in which we want to estimate the effect.

3. The variable/endpoint obtained from each patient.

4. How to handle intercurrent events, which are “events occurring after treat-
ment initiation that affect either the interpretation or the existence of the mea-
surements associated with the clinical question of interest”, such as rescue med-
ication.

5. The population-level summary measure we want to use to quantify the effect
of treatment.
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An estimand addresses a trial objective. By clearly defining the five estimand at-
tributes, we achieve not only a motivation for the chosen trial design, but also a trans-
parent interpretation of trial data that aligns with the trial objective. The International
Council for Harmonisation (2019) does not explicitly mention causal reasoning, but the
treatment effects advocated herein are clearly causal by nature.

1.3 Causality and the estimand

In this section, I will put RWD, RWE, and the estimand framework into rigorous
mathematical causal inference terms. This is necessary for two reasons. First, because
causal inference isn’t mentioned directly in the regulatory guidance documents related
to RWD, RWE or the estimand framework (International Council for Harmonisation,
2019; US Food and Drug Administration, 2017). Second, because it makes the link to
my research in this dissertation much more clear. This is not just an exercise in fitting
some regulatory documents into a theoretical framework. Causal inference really seems
to have played a big role in the thinking behind the estimand framework for example
when explaining the effect of treatment as “how the outcome of treatment compares
to what would have happened to the same subjects under alternative treatment (i.e.,
had they not received the treatment, or had they received a different treatment)”
(International Council for Harmonisation, 2019). Furthermore, the central problem for
the use of RWD/RWE, namely confounding, is best described with this framework.

Suppose we are interested in the effect of treatment with the psoriasis medication
Brodalumab (Encepp, 2021) on the risk of suicide. Then the treatment in the estimand
framework is binary and could be denoted by A, where A = 1 corresponds to treatment
with Brodalumab, and A = 0 could be treatment with a comparator drug. Admittedly,
this is a strong simplification we make in the interest of illustration, since treatment
in practice is complicated by the fact that subjects can get on and off treatment.
The variable/endpoint would be suicide, which we can denote by Y , where Y = 1
corresponds to suicide, and Y = 0 corresponds to no suicide. In causal inference, we
define counterfactual outcomes, also known as potential outcomes, Y a corresponding to
the outcome we would observe for the subject if they, possibly counter to fact, received
treatment a (Hernán, M. A. and Robins, J. M., 2020). Usually we only observe subjects
with one treatment, so the central problem in causal inference is a problem of missing
data (see Figure 1.1).

In that case, it is possible to define a causal effect, for instance, the average treat-
ment effect (ATE):

E
(
Y 1 − Y 0

)
.

The ATE is the average outcome we would observe if all subjects received Brodalumab
minus the average outcome we would observe if all subjects received the comparator
treatment. Thus, the ATE indeed compares ”how the outcome of treatment compares
to what would have happened to the same subjects under alternative treatment” (In-
ternational Council for Harmonisation, 2019). The ATE could serve as the population-
level summary measure in the estimand framework. The population we are interested
in could, for example, be a population of psoriasis patients, arguably with a severe
stage of psoriasis. The strategy for handling intercurrent events could, for example, be
the treatment policy strategy, which simply ignores intercurrent events. On that note,
intercurrent event strategies may align to several inference strategies, such as com-
peting risk analysis (while on treatment strategy) or mediation analysis (hypothetical
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The data we want The data we have

Figure 1.1: If we had the choice, we would like to have the data on the left where we
observe subjects in both treatment arms. Unfortunately, in real life, we only have the
dataset on the right, where we only observe subjects in one treatment arm.

strategy) (VanderWeele, 2016). Now it is clear how to define an estimand theoretically.
In the next section, I will go over how to use this in the data analysis.

1.4 Going from Real World Data to Real World

Evidence via the estimand

In this chapter, we will cover popular ways of getting from estimand to estimate, which
facilitates the use of RWD. Let’s return to the example of Brodalumab and the risk
of suicide. How would we provide an estimate of the treatment effect in this case? In
theory, we could have an RCT where we randomize subjects with severe psoriasis to
either Brodalumab or the comparator drug. Then it is easy to obtain a causal effect
under the following three causal assumptions (Hernán, M. A. and Robins, J. M., 2020):

1. A = a ⇒ Y = Y a (consistency).

2. Y a |= A, for a = 0, 1 (exchangeability).

3. 0 < P (A = a), for a = 0, 1 (positivity).

The consistency assumption seems obviously true, and has the practical consequence
that we actually observe some of the counterfactual outcomes of interest. This is
partly illusory due to notation. As argued in VanderWeele (2009), we could define
potential outcomes, Y a,k which are the outcome the subject would get if treatment a
was given through means k. Then the notation Y a implies that we are assuming that
the effect of the treatment doesn’t depend on the means with which the treatment was
given, i.e., we assume Y a = Y a,k for all k of interest. Assuming that, the consistency
assumption states that A = a implies Y = Y a = Y a,k. For example, we assume it
doesn’t matter whether the subjects receive Brodalumab in an RCT or through other
means. We assume that it is meaningful to actually talk about the treatment effect.
The consistency assumption might for instance be violated if we are trying to estimate
the effect of weight loss on life expectancy, since it probably matters whether weight
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loss is through diet and exercise, or through surgery (Hernán, M. A. and Robins, J.
M., 2020, p. 39). It could be resolved by specifying the means for the intervention
so that weight loss through different means are considered different treatments. The
bottom line is that the consistency assumption actually is a non-trivial assumption.
We would usually not worry about this in an RCT, because the treatment is very well-
defined, but it should be considered seriously in an actual data analysis with RWD.
The exchangeability assumption is sometimes called no-unmeasured confounding and
implies that the distribution of outcomes among those randomized to treatment is the
same as what the distribution of outcomes would have been among the untreated, if
they had instead been treated. The positivity assumption implies that we have subjects
in both treatment arms, which is clearly necessary and known in any trial. Then it
is possible to estimate the ATE simply by taking averages within groups, due to the
following little calculation

E(Y 1 − Y 0)
2.
=E(Y 1 | A = 1)− E(Y 0 | A = 0)
1.
=E(Y | A = 1)− E(Y | A = 0).

The main problem with this trial in practice is that suicide, luckily, is a relatively rare
outcome. Thus, the required sample size in order to have enough power in such a trial
would be enormous. This would take an unacceptable amount of time, patients, and
money to do in practice. There is indeed a need for RWD in this context.

Using RWD is potentially way faster and more cost-efficient, since we might already
have all the data needed to answer our research question. The main problem with
this approach, and with RWD in general, is the assumption of exchangeability. If,
for example, we just compare whether patients on Brodalumab commit suicide more
frequently than patients on the comparator drug, then we might have confounding.
For example, if the comparator drug is used for subjects with less severe psoriasis,
and if disease severity causes suicide, then we will see a higher proportion of suicides
among Brodalumab users compared to those on the comparator drug even if there is
no direct effect of Brodalumab on the risk of suicide. Researchers try to resolve this
issue by replacing the exchangeability assumption with the assumption of conditional
exchangeability

Y a |= A | X, (1.1)

for a = 0, 1 for some set of confounders X that are sufficient for confounding ad-
justment. That is, we assume subjects with, for example, same sex, age, and disease
severity, or whatever variables are included in X, are exchangeable (Hernán, M. A. and
Robins, J. M., 2020). Furthermore, the assumption of positivity has to be changed to

P (A = a | X) > 0 a.s.,

for a = 0, 1 (Petersen et al., 2012). That is, we need to be able to observe subjects in
both treatment arms for all the values of the covariates that we might observe. Then
it is possible to estimate the ATE as

E
(
Y 1 − Y 0

) (1.1)
= E

(
E
(
Y 1 | X,A = 1

))
− E

(
E
(
Y 0 | X,A = 0

))

1.
=E (E (Y | X,A = 1))− E (E (Y | X,A = 0)) , (1.2)

In practice this can be done in several ways, for example by fitting a model for the
expected outcome Ê(Y | X,A) = h(X,A, β), where β is a vector of parameters, and
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plugging into the g-formula (Robins, 1986)

1

n

n∑

i=1

h
(
Xi, 1, β̂

)
− h

(
Xi, 0, β̂

)
. (1.3)

The g-formula uses the empirical distribution of X for the distribution of X in (1.2).
Alternatively, the ATE can be written as

E

(
I(A = 1) · Y
P (A = 1 | X)

− I(A = 0) · Y
P (A = 0 | X)

)
, (1.4)

which motivates estimators where the treatment assignment is modelled resulting in
an inverse probability of treatment weighted (IPTW) estimator (Hernán, M. A. and
Robins, J. M., 2020)

1

n

n∑

i=1

I(Ai = 1) · Yi

P̂ (A = 1 | Xi)
− I(Ai = 0) · Yi

P̂ (A = 0 | Xi)
.

Equation (1.4) can be realized from the following calculation (Hernán, M. A. and
Robins, J. M., 2020, p. 25):

E

(
I(A = a) · Y
P (A = a | X)

)
1.
=E

(
I(A = a) · Y a

P (A = a | X)

)

=E

[
E

(
I(A = a) · Y a

P (A = a | X)

∣∣∣ X
)]

(1.1)
= E(E(Y a | X))

=E(Y a).

Intuitively, IPTW estimators create a pseudo population where there is exchange-
ability between treatment and outcome by up-weighting outcomes from subjects who
are under-represented in each treatment arm and down-weighting those that are over-
represented (Hejazi and van der Laan, 2023; Hernán, M. A. and Robins, J. M., 2020).
The probabilities of treatment are also known as propensity scores and can be used in
many ways due to the fact that it is the simplest transformation of X that implies con-
ditional exchangeability, assuming conditional exchangeability given X (Rosenbaum
and Rubin, 1983).

Of course, we never know for sure whether we have conditional exchangeability in
practice, or whether there is some unmeasured confounder that affects both treatment
and outcome. To return to the example with Brodalumab and suicide, if we compared
Brodalumab users to the general population, psoriasis might be causing both use of
Brodalumab and suicide. This is a clear example of what is known as confounding
by indication (Salas et al., 1999), i.e., the indication for treatment, here psoriasis, is a
confounder. This comparison would probably never be made, so a more interesting case
is confounding by severity, where it is the severity of the indication, and not just the
indication itself, which is the confounder (Salas et al., 1999). That would correspond to
patients with more severe stages of psoriasis being more likely to take Brodalumab, as
well as committing suicide. Confounding by severity is a special case of confounding by
indication (Salas et al., 1999). Confounding by indication in general and confounding
by severity specifically are hard to adjust for. One way to try to circumvent the problem
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with unmeasured confounding is to use a so-called self-controlled design that implicitly
adjusts for time-stable confounding. In the first manuscript, we show how to use such a
design called the case-time-control design in a population of drug users (Madsen et al.,
2022). An introduction to self-controlled designs, and in particular the case-crossover
and the case-time-control designs, will be provided later in this dissertation. Since
we never know for sure whether we have conditional exchangeability, it is tempting to
blame any discrepancy between results from RCTs and RWE on confounding. However,
there are other differences between randomized experiments and observational data
than the randomization (Hernán et al., 2008). The effect of treatment is not necessarily
the same for all subjects. Therefore, it makes sense to specify who we want an effect
of treatment for, which is why an estimand includes the specification of the population
in which we are targeting a treatment effect. This is clear in equation (1.2), where
the expectation of Y under treatment may depend on other covariates, X. The ATE
thereby depends on the distribution of X, i.e., the population we are estimating an
effect in. If we find a different treatment effect in an observational study and an RCT,
then it might simply be because we are estimating effects in different populations. An
advantage with RWD is that we can estimate an effect in broader, and arguably more
relevant, populations (Franklin and Schneeweiss, 2017). In Manuscript III, we consider
a population of new-users. Generally, we are interested in an effect among those who
will actually take the drug of interest, and a population of new users is exactly such a
population (Ray, 2003).

All in all, the estimand framework addresses many of the issues pointed out by the
causal inference literature, and the causal inference literature and general statistical
theory provides the actual tools to be able to use the estimand framework in practice.



2 Epidemiological designs

In this chapter, we describe popular methods for analyzing RWD. Even though these
designs suffer from bias when we have confounding, knowing these designs still makes
it easier to understand what is going on in self-controlled designs since these are in-
spired by standard epidemiology designs in many cases. This chapter is also helpful
for researchers who might want to develop theory for epidemiology or self-controlled
designs themselves.

2.1 The cohort study

In a cohort study we follow a cohort over time, usually with the purpose of evaluating
the effect of treatment on some time-to-event outcome, for example time until death.
These types of data are often analyzed with methods from survival analysis due to the
fact that outcomes often are censored, i.e., some subjects leave the cohort for some
reason unrelated to the outcome. This could for example be that they move out of the
country, haven’t had the event of interest, leave the study etc. Additionally, we might
have late entries in our data, that is, some subjects are only observed if their event
time is after a certain value (see Figure 2.1).

Time

1

2

3

4

Figure 2.1: Filled dots indicate event and empty dots indicate censoring. The beginning
of a line indicates the start of follow-up. Subject 1 is not censored and does not have
late entry. Subject 2 is censored but doesn’t have late entry. Subject 3 has late entry
but is not censored, and subject 4 is censored and has late entry.

A crucial assumption in survival analysis is that censoring, and potential late entry,
is uninformative, meaning that the censoring and late entry times are independent of

9
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the event time, at least after conditioning on observed confounders (Martinussen and
Scheike, 2006).

We denote the time of the event of interest by T ∗ and the censoring time by C.
Then our observed data consists of the observed event time T := min{T ∗, C} and the
event indicator ∆ := I(T ∗ ≤ C). In survival analysis, it is common to describe the
distribution of T ∗ in terms of the hazard function, which is defined as

α(t) =
f(t)

S(t−)
= lim

h↓0

P (t ≤ T ∗ < t+ h | T ∗ ≥ t)

h
,

where f(t) is the density and S(t−) = P (T ∗ ≥ t) is the survival function just before
time t. There is a one-to-one correspondence between the hazard function and the
density, thereby showing that the distribution indeed can be described in terms of the
hazard function. The hazard function can be thought of as the instantaneous risk of
an event at time t conditional on being at risk at time t.

The hazard function is very useful for studying the statistical properties of estima-
tors in survival analysis due to the elegant counting process theory (Andersen et al.,
1993). Let N(t) = I(T ≤ t,∆ = 1) be the counting process telling us whether the
subject has been observed having the event at or before time t, and Y (t) = I(T ≥ t) be
the at-risk indicator, telling us whether the subject is still under observation with risk
of event at time t. Let dN(t) = I(T ≤ t,∆ = 1)− I(T < t,∆ = 1) denote the change
in the counting process. The probability of having the event in the interval [t, t + dt)
for some small number dt given the information until just before time t, F(t−), is
then E(dN(t) | F(t−)) and Y (t)α(t)dt such that their difference equals zero. Thereby,
heuristically,

M(t) = N(t)−
∫ t

0

Y (s)α(s) ds

is shown to be a martingale (Andersen et al., 1993).
The hazard function is often modelled conditional on covariates, X, and treatment,

A, in the Cox model (Cox, 1972):

α(t | X,A) = α0(t) · exp(βTX + γA).

Nothing is assumed about the shape of the baseline hazard function, α0(t), and it is
typically estimated non-parametrically, which gives the model a great deal of flexibil-
ity. An important assumption in the Cox model is that the Hazard Ratio (HR) is
independent of time and given by

HR(t) =
α(t | x,A = 1)

α(t | x,A = 0)
= exp(γ).

Some self-controlled designs estimate quantities that under some conditions can be
interpreted as HRs (Farrington et al., 2018; Marshall and Jackson, 1993; Vines and
Farrington, 2001). Despite its widespread use, the HR has recently received criticism
as a summary measure. One problem is if the true HR is not constant over time,
for example if the risk is higher right after treatment than later. In that case, the
estimated HR depends on the length of follow-up, or more generally, on the censoring
distribution, which we usually don’t care about (Hernán, 2010). The other issue is
that an HR of, for example 2, after five years doesn’t contrast comparable populations,
since the population that survived five years of treatment may be healthier than the
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population that survived five years without treatment (Hernán, 2010; Martinussen
et al., 2020). In terms of the estimand framework, it is unclear that the HR ”summarises
at a population level what the outcomes would be in the same patients under different
treatment conditions being compared” (International Council for Harmonisation, 2019;
Martinussen et al., 2020).

The counterfactual framework does exactly this. In a survival setting, an ATE
could for example be risk at time τ , corresponding to the outcome variable I(T ≤ τ)
(Hernán, 2010). The ATE has the added advantage that it is easier to understand for
most people. Additionally, the ATE is defined in terms of the variables in our data as
opposed to the HR, which only makes sense if we happen to have proportional hazards.
Generally, it has been argued that the population-level summary measure should be
some function of the true data-generating mechanism, and not only well-defined if the
model we use happens to be correctly specified (van der Laan and Rose, 2011).

Another important concept in epidemiology research is the concept of competing
risks. Like censoring, competing risks mean that we stop observing the subject. How-
ever, unlike censoring, the subject experiencing the competing event may no longer be
able to experience the event of interest. A very common example of a competing risk
is death. You cannot get any event of interest after dying (Andersen et al., 2012).

Treating competing risks like censoring doesn’t jeopardize estimation of the hazard
function, i.e., a Cox model or Nelson-Aalen estimator can still be applied, but the
quantity they estimate is now the cause-specific hazard function. Let T denote the
observed event time, and ϵ denote what event we observe. Then the cause-specific
hazard function for event k equals

αk(t) = lim
h↓0

P (t ≤ T < t+ h, ϵ = k | T ≥ t)

h
.

These cause-specific hazard functions can be used to estimate the cumulative incidence
for risk k by

P (T ≤ t, ϵ = k) =

∫ t

0

αk(s) · exp
(
−

K∑

l=1

∫ s

0

αl(u) du

)
ds. (2.1)

It is important to note that the survival function in the integral, exp
(
−∑K

l=1

∫ s

0
αl(u) du

)
,

includes the cause-specific hazard rates for all causes, i.e., it is the probability of not ex-
periencing any competing risk before time t. If competing risks are treated as censoring
when estimating the cumulative incidence, for example using a Kaplan-Meier estima-
tor, the estimate of the cumulative incidence will be too high, since that corresponds
to using exp

(
−
∫ s

0
αk(u) du

)
for the survival function in (2.1).

In this PhD we have used survival analysis terminology and notation, among other
things, to move from time periods in the case-crossover and the case-time-control de-
signs to a continuous timescale. To our knowledge, competing risks had also not been
considered in the case-time-control design until Manuscript I. Furthermore, Manuscript
III exclusively considers a survival analysis setting.

2.2 The case-control study design

Intuitively, we should compare exposed to unexposed when we want to estimate the
effect of treatment on the event of interest. In case-control studies, we do the opposite.
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In case-control studies, we compare those with the event of interest, so-called cases, to
those without the event of interest, so-called controls (Schulz and Grimes, 2002). When
comparing exposed to unexposed, we would compare them in terms of the outcome.
In case-control studies, we compare cases and controls in terms of exposure to see if
their exposure distributions differ, thereby indicating that treatment and outcome are
associated (Clayton and Hills, 1993, p. 153). When doing this, we don’t need all
the subjects in the background population to find the distribution of exposure among
the controls. Therefore, the case-control study design is very cost-efficient and fast
compared to using the full cohort in a standard cohort study. This comes at a fairly
small price in terms of efficiency since every extra control after, say a few per case, will
add a very small amount of extra precision to the estimation of the treatment effect
(Clayton and Hills, 1993, p. 153). If there is no relationship between exposure and
event, and if we have no confounding, then the distribution of exposures should be
the same among the cases and the controls (Clayton and Hills, 1993, p. 153). The
odds-ratio (OR) can be estimated from the two-by-two table in Table 2.1 as

D1/H1

D0/H0

=
D1 ·H0

D0 ·H1

. (2.2)

Case Control
Exposed D1 H1

Unexposed D0 H0

Table 2.1: Subjects from case-control studies can be divided into four groups in terms
of exposure and outcome.

Comparing cases to controls in terms of exposure instead of exposed to unexposed
in terms of outcome may seem backwards (Schulz and Grimes, 2002), but is completely
legitimate because the OR is symmetric in the sense that if we, by accident, mixed up
treatment and event status, then we would end up with an OR of

D1/D0

H1/H0

=
D1 ·H0

D0 ·H1

,

which is exactly the same as in (2.2). This explains why it is legitimate in the case-
control design to compare cases and controls instead of exposed and unexposed. It
simply doesn’t matter as long as the focus is on the OR. The symmetry of the OR is
also very useful in the case-crossover design, since it allows us analytically to focus on
the odds of exposure instead of the odds of event. Moreover, the OR is approximately
equal to the risk ratio when the event is rare, which is usually the case when conducting
case-control studies, since the reason for choosing a case-control design often is that the
event is rare. This follows straight from the fact that odds, p/(1−p), are close to risks,
or probabilities, when p is small (Clayton and Hills, 1993, p. 8). Measured confounders
can be adjusted for in a logistic regression model. Denote sampled by S = 1 and not
sampled by S = 0. Denote the probability of outcome in the background population
with treatment e by pe. Then the probability in the sampled population is found with
Bayes’ theorem

P (Y = 1 | E = e, S = 1) =
P (S = 1 | Y = 1) · pe

P (S = 1)
, (2.3)
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and likewise for P (Y = 0 | E = e, S = 1). Then the odds are

P (Y = 1 | E = e, S = 1)

P (Y = 0 | E = e, S = 1)
=

pe
1− pe

· P (S = 1 | Y = 1)

P (S = 1 | Y = 0)
.

The main point with the above calculation is to show that the odds in the sampled
population are the same as in the background population multiplied by the ratio of
sampled cases to sampled controls. Typically, all cases will be sampled such that
P (S = 1 | Y = 1) = 1. Note that we have assumed sampling independent of treatment
above, as we indeed should. The above calculation implies that if we fit a logistic
regression to the outcome in the sampled population, then it is only the intercept that
is influenced by the sampling (Clayton and Hills, 1993, p. 155).

2.2.1 Matching and the analysis of stratified data

A popular strategy to gain efficiency in case-control studies is matching. Matching
means that controls are sampled such that a constant ratio between the number of cases
and the number of controls is achieved within strata of the data. This could for instance
be within each sex and age group. In the following, we use sex as an example of a
matching variable to make the arguments easier to follow, but the argumentation would
be exactly the same for any other matching variable. Intuitively, matching achieves
more efficiency because it ensures that the distribution of men and women is the same
among cases and controls, thus avoiding uncertainty due to a chance imbalance in
the distribution of men and women. Unfortunately, some of the initial popularity of
matching came from the mistaken idea that there is no need to adjust for a variable
that has been used for matching. At first, this seems intuitive: the distribution of men
and women is already the same among cases and controls, so why would we need to
adjust for it? The reason is that the OR is non-collapsible, that is, the OR conditional
on sex is not the same as when not conditioning on sex (Sjölander et al., 2016). In
fact, the bias will predictably be towards an OR of one if we fail to adjust for sex
(Clayton and Hills, 1993, p. 180). The necessity of adjusting for sex can also be
realized from (2.3) by letting the sampling probabilities depend on sex, in which case
the intercept in the logistic regression also depends on sex. Furthermore, the ability
to interpret the effect of sex on outcome is lost when using it for matching, since the
distribution of men and women is the same among cases and controls after matching
(Clayton and Hills, 1993, p. 179). There is also the issue of overmatching which is
when the matching variable is strongly related to exposure but not to event. In this
case, matching may reduce precision since the amount of variability in exposure within
groups of the matching variable will be reduced (Clayton and Hills, 1993, p. 181). For
example, if sex strongly predicts exposure then we will have strata of men and women
where most subjects within each stratum have the same exposure, thus leading to an
estimate with less precision than we would have obtained if we did not match.

Estimation in matched case-control studies relies on logistic regression. This ap-
proach works well if the number of strata is small and the number of subjects in each
stratum is big. However, that is not the case if for instance subjects are individually
matched, that is, if we want each case and its matched controls to constitute a stra-
tum. In that case, the data will typically be analyzed by use of the Mantel-Haenszel
estimator or conditional logistic regression. To perform inference, we produce one two-
by-two table as in Table 2.1 for each stratum. Denote the different strata by k, and the
numbers in the corresponding two-by-two tables Dk

1 , D
k
0 , H

k
1 , H

k
0 , and the total number
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of subjects in stratum k by nk. Then the Mantel-Haenszel estimator of the OR equals
(Clayton and Hills, 1993, p. 177)

∑K
k=1

Dk
1H

k
0

nk

∑K
k=1

Hk
1D

k
0

nk

. (2.4)

The Mantel-Haenszel estimator is a popular estimator of the OR and is close to the
maximum likelihood estimator based on the hypergeometric distribution obtained by
conditional logistic regression when the OR is close to one (Clayton and Hills, 1993, p.
177). Alternatively, matched case-control studies are analyzed with conditional logistic
regression (Clayton and Hills, 1993, p. 234). Denote the binary outcome for subject
i in stratum k by Yik and the covariates for the subject by Xik. Then the conditional
logistic regression models the probability of outcome by

logit [P (Yik = 1 | Xik = x)] = αk + βTx.

The intercepts are stratum specific and the rest of the regression looks like standard
logistic regression. The likelihood contribution from each subject becomes the con-
ditional probability of the subject being a case, given the total number of cases and
controls in the stratum the subject is in. The stratum specific parameters αk cancel out
in these calculations and therefore don’t need to be estimated (Clayton and Hills, 1993,
p. 293). Case-crossover designs can be seen as a special type of individually matched
case-control studies, where control subjects very directly are replaced by control times
and all the analysis methods are the same as for individually matched case-control
studies. Individual matching is also used in the nested case-control design (Clayton
and Hills, 1993, ch. 33), which we will describe in the next section.

2.3 Nested case-control

The nested case-control study design is an efficient alternative to a cohort study. In the
nested case-control study, controls are sampled for each case among all subjects at risk
at the time of event (see Figure 2.2) (Clayton and Hills, 1993, p. 330). Matching can
be employed in the sampling just as in the case-control design. The data are analyzed
with conditional logistic regression, where each case and its matched controls constitute
a stratum (Clayton and Hills, 1993, p. 331). In that context, it seems natural to
interpret the estimated treatment effect as an OR, but in fact it turns out the estimated
treatment effect is an estimate of the HR (Borgan et al., 1995). The main advantage
with a nested case-control study over cohort studies is that fewer subjects are needed,
thereby making the analysis easier and more cost-efficient compared to using the full
cohort, since data collection is only necessary for the cases and the sampled controls
(Clayton and Hills, 1993, p. 329). This enables collection of expensive measurements
such as biomarkers that would not be feasible for the entire cohort. Furthermore, the
analysis is easier in case of time-dependent confounders since we only need the value
of the confounders at the time of sampling for the analysis (Borgan et al., 1995). The
main drawback is when we are interested in the effect of treatment on several outcomes.
In that case, we need to sample and make separate analyses for each outcome. As a
solution to this, it has been proposed to sample controls at the time of recruitment
instead of at the time of event. This design has been termed the case-cohort design
and has similar logistical advantages as the nested case-control study, but can handle
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Time

Figure 2.2: Filled dots indicate events, and empty dots indicate censoring. Controls
are sampled among all subjects at risk at the time of event, including future cases.

several outcomes of interest (Clayton and Hills, 1993, p. 331). The statistical analysis
of data from a case-cohort design is unfortunately quite challenging and will not be
covered here (Clayton and Hills, 1993; Barlow et al., 1999).

2.4 Poisson regression

Poisson regression is a popular type of generalized linear model (glm) that is used for
count data, i.e., data where the outcome Y can take the values 0, 1, . . . (McCullagh
and Nelder, 1998, ch. 6). The assumption is that this count comes from a Poisson
distribution with a mean conditional on covariates X of the form

g(E(Y | X = x)) = βTx, (2.5)

where g is a link function, typically the logarithm, to ensure a positive expected number
of counts (McCullagh and Nelder, 1998, ch. 6). In epidemiology, Poisson regression
is particularly used to model data from contingency tables, such as the hypothetical
Table 2.2 (Clayton and Hills, 1993, p. 227). Subjects can contribute with person-years
to more than one age group if they happen to be between 30 and 40 years old in a
part of the study and 41 to 50 years old later on (Clayton and Hills, 1993, p. 227). A
Poisson regression model can be fitted to these types of data by using person-years as
offset, for example by the following R code (R Core Team, 2022):

glm(cases~offset(log(personyears))+Age+Exposure ,family="poisson")
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Cases Person-years Age Exposure

4 608 30-40 0
2 311 30-40 1
5 945 41-50 0
7 732 41-50 1
9 438 51-60 0
2 944 51-60 1

Table 2.2: Contingency table for Poisson regression. The data have three age groups
and two treatment groups.

According to this model the expected number of cases, for example in row one in Table
2.2 is

exp(log(608) + β0 + βAge0 + βExp0) = 608 · exp(β0).

Treatment group 0 and age group 30-40 have been assumed to be reference levels in the
calculation above. The point of the calculation is to show that the model states that
the number of events in one person-year follows a Poisson distribution with a mean
of exp(βTx) like in (2.5). The offset simply multiplies this expected number with the
number of person-years. The estimates we get from such a model are rate ratios. For
the effect of treatment, the rate ratio is the relative difference in the expected number
of events in a given time frame among exposed compared to unexposed within age
groups (Clayton and Hills, 1993). The likelihood approaches the likelihood from a Cox
model when the age bands become smaller. Thus, the rate ratios will tend to be similar
to the HR from a Cox model (Clayton and Hills, 1993, p. 299). Poisson regression
seems to have been an inspiration behind the self-controlled case series analysis (SCCS),
presented in the next chapter (Farrington et al., 2018).

2.5 Instrumental variables

Instrumental variables is an analysis method for observational data that does not rely
on conditional exchangeability. Instead, treatment is initially replaced by a variable,
known as an instrument, in the analysis. The intuition is that we approximate the
effect of treatment on outcome with the association between an unconfounded proxy
for treatment and outcome. The instrument needs to fulfill the following formal criteria
(Baiocchi et al., 2014):

1. The association between instrument and outcome is unconfounded.

2. The instrument causes treatment. Thereby, the instrument outcome association
reflects the treatment outcome association.

3. There is no direct effect of instrument on outcome. Such an effect would ren-
der the association between instrument and outcome a biased estimate of the
treatment outcome association.

These three requirements can be summarized by the directed acyclic graph (DAG) in
Figure 2.3.
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I A

U

Y

Figure 2.3: DAG for instrumental variable setup. I is the instrument, A is exposure,
U is a set of unmeasured confounders, and Y is the outcome.

Note that these requirements make it a challenge to identify an instrumental vari-
able in practice. However, nice examples of instrumental variables do exist. A partic-
ularly nice example is in randomized trials where some subjects don’t take the treat-
ment they were randomized to, also known as non-compliance (Baiocchi et al., 2014).
If someone asked you whether we should use randomized treatment or actual treat-
ment in our estimation, your first thought might be actual treatment. After all, this
is the treatment the subjects actually received. However, it is clear that actual treat-
ment might be confounded, whereas the randomized treatment is not. The randomized
treatment often has no direct effect on outcome, either. Randomized treatment there-
fore often satisfies all the conditions for being an instrumental variable, and we might
proceed by using randomized treatment, which in the pharma industry is known as
an intent-to-treat analysis. Another result about instrumental variables might become
clear from this example: we will tend to underestimate the true treatment effect by
using randomized treatment instead of actual treatment, especially if we have a lot of
non-compliance. This is adjusted for in an instrumental variable setting, for example
by using the Wald formula

E(Y | I = 1)− E(Y | I = 0)

P (A = 1 | I = 1)− P (A = 1 | I = 0)
,

which estimates the effect among the compliers (Baiocchi et al., 2014). The numerator
is the intent-to-treat estimator, and the denominator is the proportion of compliers.
A bit of terminology might be necessary here: a complier is not just someone who
takes the treatment they are randomized to. A complier is someone who would take
the randomized treatment, no matter what it happened to be. The terminology is
summarized in Table 2.3.

A1 A0

Complier 1 0
Always-taker 1 1
Never-taker 0 0
Defier 0 1

Table 2.3: Ai denotes treatment when randomized to treatment i.

The intuition for why the estimate is an effect only for the compliers is also clear:
we don’t have any potential outcomes under treatment among the never-takers and
no potential outcomes without treatment among the always-takers. Thus, we can’t
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extrapolate results to those subpopulations without further assumptions. The Wald
estimator depends on an assumption of no-defiers in order for the denominator to be
the proportion of compliers (Baiocchi et al., 2014).

Instrumental variables enable unconfounded estimation of a causal effect for obser-
vational data. The main downside is that good instruments are rare (Baiocchi et al.,
2014).

2.6 What’s the time?

Often different timescales will matter for the risk of outcome. Dependent on the specific
study design, time can refer to calendar time, age, time since exposure etc. (Clayton
and Hills, 1993, ch. 6). But what is the right timescale to use, and do you have to
choose? Usually, age is important in epidemiological studies, since the risk of most
outcomes vary substantially with age. Therefore, it makes sense to have age as your
timescale, but it is not necessary since age can be included as a covariate in a regression
model (Clayton and Hills, 1993, ch. 6). In fact, methods have been proposed, where it
is not necessary to choose a specific timescale, but several timescales can be handled
simultaneously in a flexible way, for example using splines (Iacobelli and Carstensen,
2013; Crowther and Lambert, 2014). This requires parametric modelling of the baseline
hazard, but this might not be too big a problem considering the flexibility enabled by
the methods, especially considering how similar results from Cox modelling and Pois-
son models tend to be (Clayton and Hills, 1993, p. 299). Nevertheless, the timescale
is probably an underappreciated difference between RCTs and observational studies
(Hernán et al., 2022). The difference of timescale has in some cases been the main
reason for different results when comparing RCTs and observational studies in practice
(Hernán et al., 2022). Specifically, time zero is more or less always the time of random-
ization, which is most likely the main motivation behind new-user designs (Ray, 2003).
In this PhD, timescales have played a role in Manuscript I, where we consider calendar
time as our timescale due to the fact that the time-trend we want to eliminate depends
more on calendar time than age, although concerns about confounding by age could
be alleviated by matching controls on age as well. In Manuscript III, time zero refers
to the time of first treatment, which is a necessary requirement for the methodology of
that paper to apply. Specifically, the choice of timescale made it possible to adjust for
unmeasured time-stable confounding simply by adjusting for the number of treatment
administrations.
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The basic idea in self-controlled designs is to compare subjects with the event of in-
terest, also known as cases, to themselves at different time points. This has the added
advantage that we only need cases in the analysis. The cases are their own controls
(Maclure et al., 2012). It might seem challenging to say anything about the risk of
outcome if we only observe subjects who have that outcome. However, our research
question is not to determine the risk of outcome, but to determine whether treatment
affects the risk of outcome. This is possible because we observe subjects over time,
both under treatment exposure and without treatment exposure. Then it is possible
to determine whether the risk of event is higher at times of exposure than at times
without. It has the additional advantage that conditional exchangeability seems more
reasonable since the subjects in active treatment are the same as the ones without
treatment, although at different time points. However, it subtly answers a different
research question than normally, namely “why now?” instead of “why me?” (Maclure,
2007). All the information in the estimation comes from subjects who have different
exposure status at different times. Thereby, we get an effect in a population that
changes treatment status. An extreme example would be in the case of sex, where the
estimate would change from ’the effect of being male’ to ’the effect of having switched
sex to male’, which is an entirely different research question (Maclure et al., 2012).

Unfortunately, even here conditional exchangeability is not something we can take
for granted, since some confounders may change over time (Mittleman and Mostofsky,
2014). However, self-controlled designs effectively adjust for confounders that are stable
in time. Perhaps the simplest form of a self-controlled design is the case-crossover
design, which we will describe in the following along with the case-time-control design,
which is an extension of the case-crossover design that handles time-trends in exposure,
and which is the topic of Manuscript I.

3.1 The case-crossover design

The case-crossover design was developed by Maclure (1991). The idea is very simple:
compare the exposure status at the event time to the exposure status at a number of
time points before, known as reference times (see Figure 3.1). If subjects are exposed at
the time of event more frequently than at the reference times, then it might be because
treatment causes the event. The standard description of the design is in terms of time-
periods. Here, I will describe the design in continuous time. Things like timescale,
censoring and competing risks are more natural to discuss with a continuous timescale,
and it reflects the practical use of the design with registry data, where we have, more
or less, exact days of events and treatments, better.

The design is a perfect example of going from comparing subjects to times. It is
the self-controlled design equivalent of a matched case-control study, where control
subjects have been replaced by control times and each subject constitutes a stratum.
In this light, it is very clear that the design is self-controlled, and every case quite
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EventReference

Case
Exposed

Unexposed

Calendar time

Reference

Figure 3.1: The exposure status at the time of event is compared to the exposure
statuses at the two reference times here. Note that the Figure is in continuous time.

literally serves as their own control. The analysis methods are, not surprisingly, also
the same as in individually matched case-control studies.

Denote the treatment status for subject i at time t by Ei(t), the exposure at the time
of event by Ei(tτ ), and the exposure status at the reference times by Ei(t1), . . . , Ei(tK).
Then the Mantel-Haenszel estimator in this setup equals

∑n
i=1

∑K
k=1 I(Ei(tτ ) = 1, Ei(tk) = 0)∑n

i=1

∑K
k=1 I(Ei(tτ ) = 0, Ei(tk) = 1)

.

The estimator is particularly simple in the case with only one reference time, where it
becomes ∑n

i=1 I(Ei(tτ ) = 1, Ei(t1) = 0)∑n
i=1 I(Ei(tτ ) = 0, Ei(t1) = 1)

.

This is even easier to understand when looking at it in a two-by-two table as in Table
3.1. The Mantel-Haenszel estimator is simply the number of subjects exposed at event
but not at reference divided by the number of subjects exposed at reference but not at
event.

Reference
Unexposed Exposed

Event Unexposed a b
Exposed c d

Table 3.1: With one reference time point, the Mantel-Haenszel estimator simply be-
comes c/b.

The Mantel-Haenszel estimator has been shown to be unbiased for the HR under
the following stratified Cox regression model

λi(t) = λi0(t) · exp(β · Ei(t)),

when there is no time-trend in exposure and the outcome is rare (Vines and Farrington,
2001). The baseline hazard function λi0(t) is subject specific and represents the self-
adjustment in the design. It is quite remarkable that nothing has to be assumed about
the subject specific baseline hazard functions in order to estimate the HR with the case-
crossover design. The requirement that there are no time-trends in exposure is very
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intuitive: if the probability of being exposed increases over time, then the estimated
OR will be greater than one simply because the event time happens to be later than the
reference times, at least assuming there is not a strong protective effect of treatment.
In the language of the case-control design, this can be seen as sampling controls from
a different cohort than cases, namely a less exposed cohort. Time-trends essentially
make time periods non-exchangeable (Mittleman and Mostofsky, 2014).

Traditionally, the case-crossover design has been described in terms of time peri-
ods, so that tτ and tk are periods. In this framework, the HR can be given a causal
interpretation (Shahn et al., 2022).

Conditional logistic regression has, not surprisingly given the parallel to case-control
studies, also been suggested as an analysis method in the case-crossover design. The
main advantage over the Mantel-Haenszel estimator is that maximum likelihood pro-
vides asymptotic optimality, thereby ensuring optimal use of data from the design
(Vines and Farrington, 2001). Unfortunately, it is biased when the exposures within
subjects are not globally exchangeable, unless we restrict the design to one control pe-
riod, in which case the conditional logistic regression is unbiased for the HR as long as
we don’t have a time-trend in exposure. Global exchangeability implies no time-trend
in exposure, but also that the dependence between exposure statuses at different time
points are the same. This assumption is for example violated if exposure statuses at
time-points closer to each other are more correlated than exposure statuses at more
distant time points (Vines and Farrington, 2001). Similar results were discovered in
the case-time-control design in simulation studies (Jensen et al., 2014). This is a big
disadvantage compared to the Mantel-Haenszel estimator, which doesn’t require global
exchangeability in the case-crossover design (Vines and Farrington, 2001), and possi-
bly also not in the case-time-control design, where it could be applied for cases and
controls separately. The case-time-control estimate of the OR could then be obtained
by dividing the case OR with the control OR. The bias of the conditional logistic re-
gression can be alleviated through weighting methods that also enable adjustment for
measured time-dependent confounders (Kubota et al., 2021).

A simple solution to the problem of time-trends in the case-crossover design is sim-
ply to have reference periods both before and after the event time, as is the case in the
bidirectional case-crossover design (Navidi, 1998). The theoretical justification for this
solution is that the usual case-crossover design can be seen as suffering from selection
bias when there is a time-trend in exposure. That is, controls will systematically be
less exposed than cases when sampling of control times only happens before the event
time, but not after (Greenland, 1996). This bias is removed by allowing control times
after the event time. However, this does not work if the event prevents subsequent
treatment, such as if the event is terminal, unless we know what the treatment status
would have been in the absence of the outcome. This is for example possible in studies
where the exposure is pollution. Unfortunately, this is rarely the case in pharmacoepi-
demiology. The case-time-control design is an alternative solution that we will describe
in the following.

3.2 The case-time-control design

The problem with time-trends in exposure may unfortunately often be a very real one.
This could for example be the case if we want to test an effect of a drug in the period
right after it was approved, in which case the usage must be expected to increase
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over time. Therefore, Suissa (1995) proposed to sample controls, and compare their
exposure status at the times of event and reference for their matched case (see Figure
3.2). Any relationship found among the controls must be attributed to the time-trend

EventReference

Case

Control

Exposed

Unexposed

Calendar time

Figure 3.2: Source: Madsen et al. (2022). Controls are compared at the event and
reference times of their matched case in the case-time-control design.

in exposure, since the controls in fact didn’t have the event of interest. The design was
originally described for a situation with only one reference time, which we will use in
the following, but it was extended to handle multiple reference times in Jensen et al.
(2014).

Denote whether subject i is a case or a control by Gi. Then the data are modelled
with a conditional logistic regression on the form

logit (P (Ei(t1) = 1)) = αi,

logit (P (Ei(tτ ) = 1)) = αi + β1 + β2 ·Gi.

The self-adjustment in this design is reflected in the subject specific parameter αi. The
OR for controls is exp(β1) and reflects the time-trend of exposure, whereas the OR
for cases is exp(β1 + β2). This reflects the effect of time-trend through exp(β1), and
the effect of treatment on outcome, reflected by exp(β2). The target of estimation
in the case-time-control design is exp(β2), which is the part of the OR for cases that
can’t be attributed to a time-trend in exposure. Unfortunately, we can’t interpret
this OR as an HR because the OR among controls depends on the joint distribution
of treatment and the tail of the event time distribution, which we have no access to
(Madsen et al., 2022). A more basic and important assumption of the design is that
cases and controls have the same time-trend of exposure. It is argued in Suissa (1995)
that this assumption is more realistic if we match controls on different covariates, such
as sex and age. It implies that the unmeasured confounders, we hope to adjust for
by using the design, don’t have an effect on the time-trend of exposure. Arguably,
this reintroduces the problem of lack of exchangeability to some extent (Greenland,
1996; Suissa, 1998). The case-case-time design has been proposed as a solution to this
problem. In the case-case-time design, controls are sampled exclusively among future
cases. This is supposed to achieve a similar time-trend among cases and controls, but
there is a trade-off between having controls with an event close to the event time of
the case in order to ensure a similar time-trend, and not having an event too close
to the event time of the case to avoid the time-trend being due to the event of the
control. Another problem is that the design is conditioning on the future (Hallas and
Potteg̊ard, 2014).
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In Manuscript I, we consider the case-time-control design in a population of drug
users. This has no effect on the OR for cases, since untreated don’t contribute to the
estimation. Nevertheless, it implies sampling controls from a different population that
is hopefully more similar to the cases. We show how this results in a bias if controls
are sampled traditionally. Furthermore, we show how to sample controls to avoid this
bias in a setup that handles random censoring and competing risks in a continuous
time setting.

3.3 The Self-Controlled Case Series analysis

(SCCS)

The SCCS was developed to analyze the effect of vaccines in a self-controlled way
(Farrington, 1995). Unlike the self-controlled designs covered so far, the SCCS analysis
is not based on logic from the case-control design (Vines and Farrington, 2001). Instead,
the design follows the logic from Poisson regression. More concretely, each subject has
an observation period [ai, bi] in which a number of events happen according to a Poisson
process with intensity rate function λi(t | xi, yi), where t is time, xi denotes exposure,
and yi denotes time-invariant confounders for subject i (Farrington et al., 2018). The
design has since been extended in several ways, but the standard version of the design
has specific age groups and treatment groups, just like Poisson regression. The intensity
rate function when subject i is in age group j with exposure level k can be written as
λijk. Several parameterizations for λijk exist, the most simple being (Farrington et al.,
2018, p. 25)

λijk = ϕi · exp(αj + βk).

How do we estimate the parameters from this model? The trick is to only consider
cases. Then the likelihood contribution from each subject becomes the conditional
probability of having the event times they had, given that they had at least one event.
Denote the number of events subject i had in age group j under treatment k by nijk

and the total amount of time spent in age group j under treatment k by eijk. Then
the log-likelihood up to a constant becomes

n∑

i=1

∑

j,k

nijk · log
{

exp(αj + βk)eijk∑
r,s exp(αr + βs)eirs

}
,

the main point being that the subject specific parameters ϕi are eliminated. Thereby,
all confounding that is time-stable with a multiplicative effect on the intensity is implic-
itly adjusted for (Farrington et al., 2018). Several extensions exist, most importantly
probably being the ability to include other covariates in the regression. There are four
key assumptions in the SCCS design (Farrington et al., 2018, p. 18):

1. Events arise according to a Poisson process. Specifically, the number of events
in non-overlapping time periods are independent. Furthermore, the design works
if the outcome is binary assuming the event is rare, basically due to the fact
that the binomial distribution and the Poisson distribution are similar when the
probability of event is small.

2. Events do not influence the observation period. This assumption is for example
violated if the event is stroke and stroke leads to death for some subjects, thus
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ending their observation periods at the times of death (Farrington et al., 2018,
p. 18).

3. Event does not influence exposure. This assumption is for example violated if
the event is a contraindication to treatment. For example, some drugs are not
allowed for clinical depression, so if we are interested in the effect of treatment
on depression, this assumption is violated.

4. Cases are either the whole or a random subset of a well-defined population. This
assumption is for example violated if cases are included in the study due to a
suspicion that their event was caused by treatment (Farrington et al., 2018, p.
19). This assumption is not unique to the SCCS design, and reflects the focus
on the population of interest in the estimand framework.

The main drawback with the SCCS design is that assumptions two and three above are
violated when the event is terminal. Extensions of the design to handle such situations
have been proposed, but rely on additional non-trivial assumptions (Farrington et al.,
2018, ch. 7).

3.4 Crossover design

In crossover designs, subjects are randomized to one of several sequences of treatments.
The simplest and most common example is with one treatment and one placebo. In
that case, subjects are randomized to either get treatment first and then placebo or
vice versa (Senn, 2002). The two periods have a washout period in between in order
to ensure that the outcome in period two is unaffected by the treatment in period one
(see Figure 3.3).

Figure 3.3: Source: Manuscript II.

Unlike the other self-controlled designs, the crossover design is made with random-
ized studies in mind. Thus, the point of crossover trials and comparing subjects to
themselves is not to avoid bias due to lack of exchangeability. Instead, the point of
crossover trials is to gain precision in order to save sample size, and consequently time
and money as well (Senn, 2002, p. 7). They have the added advantage that they enable
principal stratum analyses, i.e. estimation of treatment effects for those subjects who
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can tolerate the drug of interest (Matthews et al., 2022; International Council for Har-
monisation, 2019). Such an analysis is typically challenged by the fact that we don’t
know who in the comparison group would tolerate the drug of interest. All subjects
get all treatments in crossover trials, and therefore we know whether they can tolerate
the drug of interest or not.

Manuscript II deals with crossover designs and was motivated partly by our interest
in designs with self-adjustment and partly by the lack of use of the estimand framework
(International Council for Harmonisation, 2019) in Thorough QT (TQT) studies, which
is a specific type of crossover trial conducted to ensure drug safety before drug approval.

Randomization opens up a whole new world of opportunities. With observational
data, we might be biased even if we have all the right variables in our dataset in order
to ensure conditional exchangeability. Bias may emerge simply if we misspecify the
model or the functional form of the effects of covariates. In practice, we rarely know
the true model or functional form of the effects of covariates. In randomized trials, such
as the crossover design, it turns out we can estimate treatment effect unbiasedly even
without adjusting for covariates, although such non-parametric estimators can often
be seen as special cases of models with only treatment included as a covariate. If we
do adjust for covariates in an outcome regression model, we will often estimate causal
treatment effects unbiasedly even if crucial model assumptions are wrong (Rosenblum
and Steingrimsson, 2016; Bartlett, 2018). In Manuscript II we extend some of these
robustness results to a large class of working regression models in crossover designs.
In this context, one important point is that even though unbiasedness is ensured by
randomization, model based standard errors may still be wrong. Fortunately, robust
standard errors can be estimated from the influence function. The theory behind
influence functions will be described in the next section.

3.5 Modelling and semi-parametric efficiency

theory

Anyone who has studied statistics has spent quite some time on modelling. But why
do we model data? The ATE is not defined in terms of a model, after all. One answer
might be to avoid confounding and be able to estimate the ATE from (1.2). This
is indeed a very good reason for using a model. However, models are also used in
RCTs where confounding is less of a problem due to the randomization. Missingness
can break the randomization and motivate the use of models, but models also serve
another purpose, which arguably is their main purpose in RCTs. Models help us
gain efficiency, which leads to a smaller required sample size. Unadjusted estimators,
typically averages within treatment arms, are known to be unbiased for causal effects
due to randomization. However, it is not trivially true that we are unbiased if we fit a
model to data and plug into (1.3). Somewhat surprisingly, this turns out to be the case
in one-period trials when the working model is a generalized linear model (glm) with a
canonical link function, no matter the true data-generating mechanism (Bartlett, 2018;
Rosenblum and Steingrimsson, 2016; Wang et al., 2021). Manuscript II extends these
results to cross-over trials with linear mixed models as working models.

In randomized trials, the working model becomes a tool to gain efficiency rather
than an attempt at finding the true data-generating mechanism, since unbiased esti-
mation would be easy to obtain even without a model. The robustness results of the
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effect estimates unfortunately don’t extend to the variance of the effect estimates. The
inverse information may very well lead to a biased estimate of the variance under a mis-
specified model. This is particularly clear when the working model is a standard linear
regression model in a cross-over trial. It follows from the main result in Manuscript II
that linear regression is unbiased for the treatment effects of interest despite assuming
all observations independent, including the different observations from the same sub-
ject on the same day. Fortunately, it is possible to estimate the asymptotic variance
correctly and get asymptotic normality of our estimator. In order to obtain that, we
need a bit of semi-parametric theory (Tsiatis, 2006, p. 23):

Definition 1 (Asymptotically linear estimators) Let Z1, . . . , Zn be iid random vec-
tors of data. We say that β̂n is an asymptotically linear estimator of the q-dimensional
vector β0 if there exists a q-dimensional random function φ(Z) with E(φ(Z)) = 0 and

√
n
(
β̂n − β0

)
=

1√
n

n∑

i=1

φ(Zi) + op(1),

where op(1) is a term that converges to zero in probability. The function φ is called the

influence function for β̂n.

Influence functions are almost surely unique, and examples of influence functions in-
clude (Tsiatis, 2006)

• φ(Zi) = (Zi − µ0) for the sample average, where µ0 is the true mean.

• φ(Zi) = I(β0)
−1S(β0) for the maximum likelihood estimator, where I(·) is the

information matrix and S(·) is the score function.

• φ(Zi) = −
[
E
(

∂m(Z,β0)
∂βT

)]−1

m(Z, β0) for m-estimators, i.e. estimators that solve

the equation
n∑

i=1

m(Zi, β) = 0.

It follows from the central limit theorem and Slutsky’s theorem that asymptotically
linear estimators have the following asymptotic behavior:

√
n
(
β̂n − β0

)
D→ N

(
0, E

(
φ(Z)φ(Z)T

))
.

It follows from this result that if we know the influence function of an estimator, then
we can estimate its asymptotic variance by

1

n2

n∑

i=1

φ̂(Zi)φ̂(Zi)
T ,

where φ̂(Zi) is the estimated influence function. This estimator is (asymptotically)
valid, no matter the true data-generating mechanism (Tsiatis, 2006). Unfortunately,
the asymptotic variance from the influence function can be too low in small trials.
Finite sample adjustments have been proposed for specific types of working models,
but the simplest and most popular adjustment is to use

1

n(n− 1)

n∑

i=1

φ̂(Zi)φ̂(Zi)
T
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for the variance estimate, and then base the confidence intervals on the t-distribution
with n− 1 degrees of freedom instead of a standard normal distribution for confidence
intervals and hypothesis tests (Colin Cameron and Miller, 2015). Admittedly, this
solution is ad hoc and only has a firm theoretical justification for small samples in
linear normal models. However, generally it has the right asymptotic properties since
the difference between dividing by n and n−1 becomes negligible and the t-distribution
converges towards the standard normal distribution as the sample size increases. We
used this adjustment in Manuscript II, and it resulted in confidence intervals with
correct coverage probabilities.

The influence function with the lowest possible variance is called the efficient influ-
ence function (Tsiatis, 2006). This semi-parametric theory was used in Bartlett (2018)
to prove that the g-formula in combination with a correctly specified glm with canoni-
cal link yields the (asymptotically) best possible estimator in a one-period RCT in the
sense that its influence function equals the efficient influence function.

As indicated, the RCT world and the observational data world require different tools
and considerations. In the RCT world, we will be unbiased (almost) no matter what we
do, whereas we risk being biased if any minor modelling assumption is violated in the
observational data world. However, this is only a part of the picture. Semi-parametric
efficiency theory has been used to derive doubly robust estimators for observational
studies. As seen earlier, causal effect can be estimated by modelling the outcome and
using the g-formula, or by modelling treatment in IPTW estimators. However, doubly
robust estimators use both models. These estimators have the property that they are
unbiased if either or both models are correctly specified, and they are efficient if both
models are correctly specified (Hejazi and van der Laan, 2023). Denote covariates by
X, treatment by A, the model for the expected outcome given covariates E(Y | X,A)
by h(X,A), and the propensity score model, i.e., the model for P (A = 1 | X), by
g(A | X). Then the efficient influence function for µ0 := E(Y 1) is (Hejazi and van der
Laan, 2023)

I(A = 1)

g(1 | X)
(Y − h(X, 1)) + h(X, 1)− µ0. (3.1)

The influence function for E (Y 0) is similar, thus enabling estimation of causal risk
difference, causal risk ratio etc. The influence function has a term related to the g-
formula estimator, h(X, 1), and a residual term related to the propensity score. If we
fit a propensity score model and an outcome model and plug into 3.1, and the outcome
model is correctly specified, then the residual term will equal zero (on average) and the
estimator is unbiased since the remaining part is g-formula with a correctly specified
model. This is irrespective of whether the propensity score model is correctly specified
or not. The influence function can also be rewritten to have a term related to the IPTW
estimator and a residual term related to the outcome model (Hejazi and van der Laan,
2023). The implication of this rewriting is that we are unbiased if the propensity score
model is correctly specified, even if the outcome model is misspecified. Thus, at least
one model has to be correctly specified with RWD, but there are two chances to get it
right to obtain unbiased estimates. However, the estimator is only completely efficient
if both models are correctly specified (Hejazi and van der Laan, 2023)

The robustness results for RCTs are also often polluted by missing data that break
the strict randomization in the theoretical results. Thus, the difference between RCT
data and RWD might be smaller than it looks like from a theoretical point of view.





4 Summary of manuscripts

The manuscripts in this PhD contribute to the understanding and proper use of self-
controlled designs, both in clinical development (Manuscript II) and observational stud-
ies for post approval safety (Manuscripts I and III).

4.1 Manuscript I

Sampling in the case-time-control design among drug users when outcome prevents
further treatment
Manuscript I considers sampling of controls in the case-time-control design, applied
to a population of drug users, when the outcome prevents subsequent treatment. For
instance, if the outcome is terminal, we will not observe what future treatment a subject
would have received in the absence of the outcome.

We show that a usual sampling leads to a bias in this setup. The bias can be
understood from Figure 4.1. There are three cases, observations 1, 2, and 3 in the
Figure. The case-time-control design requires that controls and cases have the same
time-trend of exposure. This is not satisfied in the example if controls are sampled
traditionally, i.e., among subject 4, 5, and 6 in the Figure. The problem is that
observations 4 and 5 for example could be sampled as controls for case number 1, but
if case number 1 had the treatment history of those observations, then it wouldn’t be
in our dataset to begin with, since there would be no treatment before the event time.
The problem can to some extend be thought of as the problem of conditioning on the
future (Lund et al., 2017). That is, we should not sample controls among subjects who
are only in the dataset because they get exposure after the time of sampling (i.e. the
event time of the case). As soon as this is understood, the solution of requiring controls
to have had treatment before the event time of their matched case seems reasonable.
This improved way of sampling is illustrated in the figure by tick marks and crosses,
where tick marks indicate that a subject could be sampled for the corresponding case,
and a cross indicates that the subject could not. The problem was not previously
described in the literature, and the solution seemed rather hand-wavy, so we show in
a mathematically rigorous framework that this sampling indeed solves the problem
described in the Manuscript.

We illustrate the bias and the improved sampling in a simulation study and in
a data example showing the effect of non-steroidal anti-inflammatory drugs on the
risk of upper gastrointestinal bleeding. We find a meaningful difference in the results
between the two ways of sampling controls, thereby highlighting the importance of
the sampling method in practice. Furthermore, we extended the design to continuous
time with competing risks. Originally, in line with the estimand framework and the
result in Shahn et al. (2022), we had hoped to be able to give an interpretation of the
target parameter in the case-time-control design. Unfortunately, the target parameter
seems to depend on the relationship between the tail of the outcome distribution and
the exposure distribution. We didn’t want to make very strong assumptions about
this and therefore had to settle with showing that if exposure increases risk of the
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Figure 4.1: Source: Madsen et al. (2022). L denotes time of first treatment and T
denotes time of event (13+ meaning no event in the study period).

event, then the target OR parameter is greater than one when the outcome is rare.
It is possible that a causal target parameter could be obtained if the framework was
formulated in terms of time-periods, as is usually done, and assuming that the logistic
regression model is correctly specified.

All in all, the paper describes and solves a previously unknown problem while
extending the design to continuous time and a competing risk setting.

4.2 Manuscript II

Unbiased and Efficient Estimation of Causal Treatment Effects in Cross-over Trials
The combination of the estimand framework and our focus on self-controlled designs led
us to the problem of cross-over trials, specifically motivated by Thorough QT (TQT)
studies. The literature on TQT trials has mainly been focused on complex modelling
of the data and use of baseline measurements, with little focus on what is really being
estimated. In this paper, we wanted to go back to square one and figure out how to
conduct cross-over trials from a causal inference perspective. This approach motivated
a g-formula type estimator, and a semi-parametric estimator with the property of being
unbiased no matter the choice of working model due to the randomization. We found,
in fact to our surprise, the result that for a certain class of working models these two
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estimators are equal, with the implication that also the g-formula estimator is unbiased
for causal treatment effects in cross-over trials when a model from this class of working
models is applied. This is of particular interest because the class of working models
in the result includes a large class of mixed effects models that are routinely applied
in TQT studies. The estimation in those models are based on assuming normally
distributed outcomes and a specific mean and covariance structure. The result of
the Manuscript ensures unbiased estimation of causal treatment effects, even if these
assumptions are violated. We illustrate the flexibility that is facilitated by the result in
a data example from a TQT study and in a simulation study. However, the robustness
shown in the Manuscript does not extend to the variance estimates, which can be biased
if the model is misspecified. Instead, we propose to estimate the variance from the
influence function in order to be completely robust to misspecification of the applied
working model. We derive the influence functions in the paper. Unfortunately, we
discovered that TQT studies typically have such a small sample size that the asymptotic
theory does not apply. Concretely, the influence function based variance estimates
underestimate the uncertainty in the estimates. We applied a rather general, although
heuristic adjustment, to the variance estimates and confidence intervals to resolve the
problem, which seemed to work well in our simulations. However, more research could
go into developing more satisfactory adjustments, and some research arguably already
has (Pustejovsky and Tipton, 2018; Imbens and Kolesár, 2016; Colin Cameron and
Miller, 2015). Another problem is that of efficiency. It would be advantageously to
know, along the lines of Bartlett (2018); Rosenblum and Steingrimsson (2016), whether
adjusting for covariates necessarily leads to lower asymptotic variance. We suspect this
to be the case, but have so far not been able to show prove it. One potential way forward
could be to derive the efficient influence function, but this is not an easy task since the
assumption of having the same treatment effect in all periods necessarily has to be used
in this derivation. Another drawback of the Manuscript is that the results rely on there
being no missing data. An assumption that is usually violated in practice. Missing
data breaks the randomization and essentially turns our data into observational data.
There are methods in Tsiatis (2006) that involve modelling the missingness mechanism
in order to gain some robustness towards misspecifying the outcome model. However,
it could be interesting to explore this theory in the case of crossover trials in future
research. A last suggestion for future research would be to generalize the result to more
flexible working covariance matrices instead of the compound symmetry like one used
in the Manuscript.

In any case, the manuscript shows that standard methods of analysis in crossover
trials, and specifically in TQT trials, lead to unbiased estimates of causal contrasts that
are easy to interpret without relying on the working model being correctly specified.

4.3 Manuscript III

Estimating causal effects in the presence of unmeasured confounding when treatment
duration is fixed
In the third project, we wanted to explore to what extent adjustment for confounding
by indication can be achieved without changing the whole design of the study and
analysis method. We wanted to do this in a context relevant to treatment with for
example biologics, i.e., antibody treatments targeted to severely sick subjects under
very controlled circumstances, where among other things the time between consecutive
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treatment administrations would be roughly constant.
In this context, we show how all unmeasured time-stable confounding can be ad-

justed for in any time-to-event model simply by adjusting for the number of treatment
administrations. However, it is not possible to adjust directly for the number of treat-
ment administrations if the outcome prevents subsequent treatment, such as when the
outcome is terminal, since we don’t know how many treatment administrations would
have taken place if a subject had not had the outcome. We propose to solve this
missing data problem by use of the EM algorithm. Even though an unconfounded
estimate of the HR is possible to obtain in this setup, we propose to use the model as
a stepping stone towards estimating a causal effect instead. The method is tested in a
simulation study and applied to registry data to estimate the effect of treatment with
antidepressant/anxiety treatment on the risk of poisoning from various medications.

However, getting a causal effect using measured covariates is challenged by the
missingness since it makes non-parametric estimation of the covariate distribution in
the g-formula difficult at best. Another weakness is the flexibility of the modelling.
In particular, it is not possible to stratify on the number of treatment administrations
in a Cox model due to lack of identifiability. Admittedly, this lack of flexibility does
not seem to be bigger than for example what is required for frailty models (Balan and
Putter, 2020).

All in all, the Manuscript allows adjusting for unmeasured confounding within
whatever modelling framework is used simply by adjusting for the number of treatment
administrations when the time between treatment administrations is fixed and time
zero is defined to be the time of first treatment administration.



5 Perspectives

The research presented in this dissertation has contributed to important and active ar-
eas of research with importance to the pharmaceutical industry and researchers in the
field of pharmacoepidemiology alike. The three Manuscripts use state-of-the-art theory
from pharmacoepidemiology, causal inference, semi-parametric efficiency theory, and
survival analysis, with relevance for the pharmaceutical industry in both clinical devel-
opment and observational studies for post approval safety. Thus, the topics covered,
and the techniques used in the Manuscripts are wide-ranging, but hopefully the intro-
duction to this dissertation equips the unfamiliar reader with the necessary theoretical
knowledge to understand them.

Although, the Manuscripts expand the amount of knowledge in these areas of re-
search somewhat, there is still plenty to learn and research. We had hoped in the
beginning of the PhD, that it would be possible to find a nicer, maybe even causal,
interpretation of the target parameter in the case-time-control design. Unfortunately,
the target parameter seemed to depend on the tail of the outcome distribution, which
we have no access to in the data. Cutting some corners in the calculations would yield
us a HR, but it was clear from the simulations that these corners were too big, and the
results rarely would be very close to the HR, even if there actually were proportional
hazards. This shortcoming was partly due to our insistence on formulating the design
in continuous time, which we think was most appropriate. However, if the design is for-
mulated in terms of periods, as is commonly the case, it is not impossible that some sort
of causal interpretation could be obtained under some extra assumptions that would
be beneficial to know. Admittedly, this causal target parameter could turn out to be
a very unnatural one that would never come out of the causal roadmap (van der Laan
and Rose, 2011). Manuscript II mainly has three shortcomings. First, it would be nice
to generalize the results to more flexible variance structures that, for example, allows
different variances for the different treatments. Second, efficiency seems within reach.
The result from Bartlett (2018), unfortunately, does not extend since the influence
function we derived is not the efficient influence function. Admittedly, the efficiency
result does extend to situations, where the target parameter can be identified as a
parameter in the model, due to the general result of asymptotic efficiency of the MLE.
Maybe the semi-parametric theory used in Rosenblum and Steingrimsson (2016) could
be used to show some efficiency gain from using a model. An alternative way forward
could be to derive the efficient influence function, or at least an alternative estimator
with the desirable property that the effect estimate equals a regression parameter for
simpler models, that happens to be easier to show efficiency gains for compared to a
simple non-parametric estimator. The last shortcoming is that the results rely on the
assumption of no missing data. This is a hard problem to get around, since it essentially
turns the data into observational, i.e. non-randomized, data. One way forward could
be to use double robust estimators that model the missingness mechanism along the
lines of Tsiatis (2006). The main shortcoming of Manuscript III is the assumption of
no time-dependent confounding. This assumption is shared with other self-controlled
designs and seems impossible to avoid without conditioning on the future (Hallas and
Potteg̊ard, 2014). Maybe the methodology of the paper can be adjusted for other
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applications.
The Manuscripts have expanded the toolkit for pharmacoepidemiological research,

which potentially can be a part of a movement towards a situation where self-controlled
designs are understood and used sufficiently well to be more commonly taught and used
instead of, or as a supplement to, analyses relying on an assumption of conditional
exchangeability, which often happens to be known to be false a-priori.

As mentioned, this movement is partly driven by technology and new data sources
along with regulatory requirements, but theory like the one presented in this disser-
tation needs to be able to catch up to these developments, and can help shape them
as well to the benefit of statisticians, epidemiologists, regulators, industry, and most
importantly, to the benefit of patients.



Bibliography

Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993). Statistical Models
Based on Counting Processes. Springer.

Andersen, P. K., Geskus, R. B., de Witte, T., and Putter, H. (2012). Competing risks
in epidemiology: possibilities and pitfalls. International Journal of Epidemiology,
41(3):861–870.

Baiocchi, M., Cheng, J., and Small, D. S. (2014). Instrumental variable methods for
causal inference: Instrumental variable methods for causal inference. Statistics in
Medicine, 33(13):2297–2340.

Balan, T. A. and Putter, H. (2020). A tutorial on frailty models. Statistical Methods
in Medical Research, 29(11):3424–3454.

Barlow, W. E., Ichikawa, L., Rosner, D., and Izumi, S. (1999). Analysis of Case-Cohort
Designs. Journal of Clinical Epidemiology, 52(12):1165–1172.

Bartlett, J. W. (2018). Covariate adjustment and estimation of mean response in
randomised trials. Pharmaceutical statistics, 17(5):648–666.

Borgan, O., Goldstein, L., and Langholz, B. (1995). Methods for the Analysis of Sam-
pled Cohort Data in the Cox Proportional Hazards Model. The Annals of Statistics,
23(5):1749–1778. Publisher: Institute of Mathematical Statistics.

Byar, D. P., Simon, R. M., Friedewald, W. T., Schlesselman, J. J., DeMets, D. L.,
Ellenberg, J. H., Gail, M. H., and Ware, J. H. (1976). Randomized Clinical Trials:
Perspectives on Some Recent Ideas. New England Journal of Medicine, 295(2):74–80.

Clayton, D. and Hills, M. (1993). Statistical models in epidemiology. Oxford University
Press, Oxford ; New York.

Colin Cameron, A. and Miller, D. L. (2015). A Practitioner’s Guide to Cluster-Robust
Inference. Journal of Human Resources, 50(2):317–372.

Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical
Society: Series B (Methodological), 34(2):187–202.

Crowther, M. J. and Lambert, P. C. (2014). A general framework for parametric
survival analysis. Statistics in Medicine, 33(30):5280–5297.

Encepp (2021). The BRodalumab Assessment of Hazards: A Multinational Safety
(BRAHMS) study in electronic healthcare databases. https://www.encepp.eu/

encepp/viewResource.htm?id=32635. Accessed: November 18, 2022.

European Medicines Agency (2017). Guideline on good pharmacovigilance practices
(gvp): Module viii—post-authorisation safety studies (rev 3).

35

https://www.encepp.eu/encepp/viewResource.htm?id=32635
https://www.encepp.eu/encepp/viewResource.htm?id=32635


36 Bibliography

Farrington, C. P. (1995). Relative Incidence Estimation from Case Series for Vac-
cine Safety Evaluation. Biometrics, 51(1):228–235. Publisher: [Wiley, International
Biometric Society].

Farrington, P., Whitaker, H., and Ghebremichael Weldeselassie, Y. (2018). Self-
controlled case series studies: a modelling guide with R. Chapman & Hall/CRC
biostatistics series. CRC Press, Taylor & Francis Group, Boca Raton.

Franklin, J. M., Glynn, R. J., Martin, D., and Schneeweiss, S. (2019). Evaluating the
Use of Nonrandomized Real-World Data Analyses for Regulatory Decision Making.
Clinical Pharmacology & Therapeutics, 105(4):867–877.

Franklin, J. M. and Schneeweiss, S. (2017). When and How Can Real World Data
Analyses Substitute for Randomized Controlled Trials?: Real world evidence and
RCTs. Clinical Pharmacology & Therapeutics, 102(6):924–933.

Greenland, S. (1996). Confounding and Exposure Trends in Case-Crossover and Case-
Time-Control Designs. Epidemiology, 7(3):231–239.

Hallas, J. and Potteg̊ard, A. (2014). Use of self-controlled designs in pharmacoepidemi-
ology. Journal of Internal Medicine, 275(6):581–589.

Hejazi, N. S. and van der Laan, M. J. (2023). Revisiting the Propensity Score’s Cen-
tral Role: Towards Bridging Balance and Efficiency in the Era of Causal Machine
Learning. Observational Studies, 9(1):23–34.

Hernán, M. A. (2010). The Hazards of Hazard Ratios. Epidemiology, 21(1):13–15.

Hernán, M. A. (2018). The C-Word: Scientific Euphemisms Do Not Improve Causal
Inference From Observational Data. American Journal of Public Health, 108(5):616–
619.

Hernán, M. A., Alonso, A., Logan, R., Grodstein, F., Michels, K. B., Willett, W. C.,
Manson, J. E., and Robins, J. M. (2008). Observational Studies Analyzed Like
Randomized Experiments: An Application to Postmenopausal Hormone Therapy
and Coronary Heart Disease. Epidemiology, 19(6):766–779.

Hernán, M. A., Wang, W., and Leaf, D. E. (2022). Target Trial Emulation: A Frame-
work for Causal Inference From Observational Data. JAMA, 328(24):2446.

Hernán, M. A. and Robins, J. M. (2020). Causal Inference: What If. Boca Raton:
Chapman & Hall/CRC.

Iacobelli, S. and Carstensen, B. (2013). Multiple time scales in multi-state models.
Statistics in Medicine, 32(30):5315–5327.

Imbens, G. W. and Kolesár, M. (2016). Robust Standard Errors in Small Samples:
Some Practical Advice. Review of Economics and Statistics, 98(4):701–712.

International Council for Harmonisation (2019). Addendum on estimands and sensi-
tivity analysis in clinical trials to the guideline on statistical principles for clinical
trials E9 (R1).



Bibliography 37

Jensen, A. K. G., Gerds, T. A., Weeke, P., Torp-Pedersen, C., and Andersen, P. K.
(2014). Brief Report: On the Validity of the Case-Time-Control Design for Auto-
correlated Exposure Histories. Epidemiology, 25(1):110–113.

Kubota, K., Kelly, T.-L., Sato, T., Pratt, N., Roughead, E., and Yamaguchi, T. (2021).
A novel weighting method to remove bias from within-subject exposure dependency
in case-crossover studies. BMC medical research methodology, 21(1):214.
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Abstract

Purpose: The objective of this article is to advocate a new way of sampling controls

in the case-time-control design in a cohort of drug users when the studied outcome

prevents further treatment.

Methods: Mathematically we demonstrate how a standard sampling of controls,

where controls are sampled among all subjects without an event at end-of-study,

leads to a biased effect estimate. We propose to add the requirement that controls

initiate treatment before the calendar time of event of their matched case to circum-

vent this. The standard and proposed sampling methods are compared in a simulation

study and in an empirical data example examining the effect of nonsteroidal anti-

inflammatory drug usage on the risk of upper gastrointestinal bleeding.

Results: When the controls are sampled the standard way, the case-time-control

design confers a bias because cases and controls have a different time-trend of

exposure.

The bias has been upwards in all the scenarios we have investigated. The require-

ment we add to be a potential control ensures that cases and controls have the same

time-trend of exposure when treatment and outcome are independent. The simula-

tion study confirms that the proposed sampling method removes the bias between

treatment and outcome. The proposed sampling method lowered the odds-ratio esti-

mate from 3.72 to 3.26 in the data example.

Conclusion: The proposed sampling method makes it possible to use the case-time-

control design in a cohort of subjects with registered use of a drug when outcome

prevents further treatment.

K E YWORD S

association, bias, case-time-control, sampling

Key Points

• A standard sampling of controls leads to a biased estimate of the effect of treatment on out-

come in the case-time-control design in a cohort of drug users when outcome prevents fur-

ther treatment.

• Cases and controls have a different time-trend of exposure when controls are sampled in the

standard way.

Received: 16 February 2021 Revised: 9 November 2021 Accepted: 20 January 2022

DOI: 10.1002/pds.5410

404 © 2022 John Wiley & Sons Ltd. Pharmacoepidemiol Drug Saf. 2022;31:404–410.wileyonlinelibrary.com/journal/pds



• A new way of sampling controls, where controls are required to have drug exposure before

the event time of their matched case, ensures that cases and controls have the same time-

trend of exposure when there is no effect of treatment on outcome.

1 | INTRODUCTION

Observational studies are often challenged by the bias incurred by

confounding.1 One solution to this problem is to compare cases, that

is, subjects that get the event of interest, to themselves. This works

because we can compare the exposure status of cases at the time of

event to their exposure status at other time points. Consequently, we

only need cases for the analysis. Accordingly, these designs are some-

times called case-only designs or self-controlled designs.2 Their clear

advantage is that time-invariant confounders are eliminated by design.

However, research in these designs is ongoing, and guidelines on their

use was only recently published by International Society for

Pharmacoepidemiology.3

One example of a case-only design is the case-crossover design4

where the exposure status at event is compared to the exposure sta-

tus at a reference time, say a year, before the event time. A problem

with this design arises when there is a time-trend in exposure. A time-

trend could for example arise if there is an increase in drug usage in

the period after drug approval or because of a change in treatment

guidelines. In that case, the probability of exposure would be higher at

the event time than at the reference time even if there is no effect of

treatment on event. It has been suggested to remove this bias by

including reference times both before and after event,5 but this

approach fails if the event affects future treatment, for example, if the

event is severe or an absolute contraindication to further treatment.

Moreover note that the self-controlled case series analysis is not a

valid alternative as this design leads to biased statements when the

event of interest affects subsequent treatment.6 A popular solution is

the case-time-control design,7 an extension of the case-crossover

design to handle time-trends in exposure. This is done by matched

sampling of controls whose exposure status is compared at the calen-

dar times of event and reference of their matched case.

The case-time-control design enables studies of rare outcomes

by use of data from large databases and eliminates commonly envis-

aged types of time-invariant confounding. However, we are not

interested in targeting an effect in a very heterogenous population

consisting of subjects who, for example, will never end up using the

drug of interest. Instead, we wish to estimate an effect in a popula-

tion of drug users. The idea of restricting focus to users is similar to

the idea behind new-user designs8—namely to get a more homoge-

nous population in terms of disease severity, which may be related

to the event of interest. A more homogenous population would

resemble a RCT more closely and lead to less bias resulting from

confounding by indication.9 The choice, unfortunately, also induces

bias if the outcome of interest prevents subsequent drug use, for

example, if the outcome is severe or an absolute contraindication to

further treatment.

The purpose of this article is to consider the case-time-control

design in this setup and propose a different way of sampling controls.

The proposed sampling method is compared to a standard sampling

method in a simulation study and an empirical data example.

2 | THE CASE-TIME-CONTROL DESIGN

This section describes the case-time-control design as it is tradition-

ally used. Subjects are observed in the study period 0,τ½ � and have

event times denoted by T. At this point it is important to note that

time refers to time in the study period, that is, the underlying time

scale is calendar time. This is the case because the time-trend we wish

to eliminate is due to events that happen in calendar time, such as

drug approval. Thus, time zero refers to the beginning of the study

period. Note that the math is still valid if another time axis than calen-

dar time is used. Cases are all the subjects with an event time in the

study period. Exposure is compared at the event time, T, and a num-

ber of reference times before the event time. We consider a setup

with exactly one reference time given by T�D2, where D2 > 0 is a

constant (see Figure 1).

If cases are exposed at their event time more frequently than at

their reference time, this indicates either that the event is a side-

effect of exposure or that there is a time-trend in exposure. The case-

crossover design assumes no time-trend and therefore only includes

cases. The odds-ratio (OR) among cases is given by the number of

cases with exposure pattern 4 divided by the number of cases with

exposure pattern 2 in Figure 1. This OR is the target parameter in the

case-crossover design. To go from the case-crossover design to the

case-time-control design, a fixed number of controls are sampled per

case among subjects without an event. Exposure for controls is

F IGURE 1 The four possible exposure patterns in the case-time-
control design
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compared at the calendar time of event and reference of their mat-

ched case (see Figure 2).

Since both of these times occur before the control has experi-

enced a potential event, we assert that any difference between how

often controls are exposed at the calendar times of event and refer-

ence of their matched case can be attributed to a time-trend in expo-

sure. The i'th subject contributes with two observations to our

dataset, one for the event time and one for the reference time. Let

Ei,ref denote exposure for subject i at the reference time (1 = exposed,

0 = unexposed) and let Ei,event denote exposure for subject i at the

event time. Let Gi be case status for subject i (1 = case, 0 = control).

The estimation is done using the following conditional logistic regres-

sion model:

logit P Ei,ref ¼1ð Þð Þ¼ αi

logit P Ei,event ¼1ð Þð Þ¼ αiþβ1þβ2 �Gi: ð1Þ

The subject specific intercept, αi, captures any difference in odds

between subjects, which is not affected by time, and thus effectively

controls for time-constant confounders. The OR for cases is

exp β1þβ2ð Þ and reflects both the time-trend of exposure and the

effect of exposure on event. The OR for controls is exp β1ð Þ and

reflects the calendar time-trend of exposure. Importantly, the odds

ratio obtained as the ratio between OR for cases and OR for controls

is identified as exp β2ð Þ. It follows that this odds ratio informs us how

much higher, if at all, the odds are of being exposed at the event time

relative to the reference time for cases, after adjusting for time-trend

in exposure in controls. Therefore, this OR is the OR of interest, and

will be termed the trend-adjusted OR.

3 | ANALYSIS

We now characterize the bias that is induced when applying a stan-

dard case-time-control design in a cohort of drug users when the

outcome of interest prevents further treatment. The resulting charac-

terization prompts a simple alternative way of sampling controls that

eliminates this problem. For ease of exposition, we consider a setup

where each subject has exactly one treatment period initiated at a

random time point L and a fixed duration D1. In Appendix A, results

and conclusions are extended to a general treatment profile with com-

peting risks and random censoring. We are considering a cohort of

drug users which means that necessarily treatment initiation, L, will be

in the study period 0,τ½ �. Furthermore, since outcome prevents further

treatment, we have treatment initiation before the event time for

cases. The four exposure patterns in Figure 1 are entirely determined

by the time of treatment initiation in this setup. A subject has expo-

sure pattern 4 if it initiates treatment in the interval B(T), which is

defined as T�D2,Tð � when D1 ≥D2, and T�D1,Tð � when D1 <D2. A

subject has exposure pattern 2 if it initiates treatment in the interval

A(T), which is defined as T�D1�D2,T�D1ð � when D1 ≥D2, and

T�D1�D2,T�D2ð � when D1 <D2. The situation where D1 ≥D2 is

depicted in Figure 3. In that case, B(T) is simply the time between

event and reference, and A(T) is the same interval but shifted by the

treatment duration. Now, treatment initiation can be in five different

regions (see Figure 3).

1. Before A(T), where exposure has ended before the reference time.

2. In A(T), where the subject will be exposed at the reference time

but not at the event time.

3. Between A(T) and B(T), where the subject will be exposed at both

the reference time and the event time. If D1 < D2 the subject will

be exposed neither at event nor at reference. Not at event

because exposure has ended before the event time, and not at ref-

erence because treatment is initiated later.

4. In B(T), where the case will be exposed at the event time but not

at the reference time.

5. After event, that is, after B(T), where the subject is exposed neither

at event nor at reference. Note that this is only possible for con-

trols in our setup.

The OR for cases, exp(β1 + β2) from (1), is identified as the proba-

bility, among cases, of initiating treatment in B(T) divided by the prob-

ability of initiating treatment in A(T). The OR for controls is identified

analogously. Consequently, for a randomly selected case i and control

j, the trend-adjusted OR, exp(β2) from (1), is identified as

F IGURE 2 Exposures for controls are compared at the calendar
time of event and reference of the case

F IGURE 3 The four possible exposure patterns are entirely
determined by the time of treatment initiation in our setup
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P Li �B Tið ÞTi ≤ τð Þ=P Li �A Tið ÞTi ≤ τð Þ
P Lj �B Tið ÞTi ≤ τ,Lj ≤ τ,Tj > τ
� �

=P Lj �A Tið ÞTi ≤ τ,Lj ≤ τ,Tj > τ
� � ð2Þ

If L and T are independent, corresponding to no effect of expo-

sure on event, the probabilities in the numerator of (2) are

P Li �B Tið ÞTi ≤ τð Þ¼
ðτ

0
P Li �B tð Þð Þ �P Ti ¼ tð Þdt

P Li �A Tið ÞTi ≤ τð Þ¼
ðτ

0
P Li �A tð Þð Þ �P Ti ¼ tð Þdt,

and the probabilities in the denominator are

P Lj �B Tið ÞTi ≤ τ,Lj ≤ τ,Tj > τ
� �¼pij

ðτ
0
P Lj �B tð Þ� �

P Ti ¼ tð Þ P Li;≤ tð Þ
P Lj;≤ τ
� � dt

P Lj �A Tið ÞTi ≤ τ,Lj ≤ τ,Tj > τ
� �¼pij

ðτ

0
P Lj �A tð Þ� �

P Ti ¼ tð Þ P Li;≤ tð Þ
P Lj;≤ τ
� � dt,

where pij is the probability that control j is sampled for case i. These

probabilities cancel out in (2) and can thus be ignored.

The probabilities in the numerator for cases differ from

the corresponding probabilities in the denominator for controls by the

highlighted fractions within the control integrals. The cause of the

problem is that treatment initiation must be before the event time for

cases but can be anywhere in the study period for controls. Hence,

the distribution of treatment initiation is different for cases and con-

trols, and they will, as a result, have a different time-trend of expo-

sure. In particular, controls can initiate treatment after the calendar

time of event of their matched cases, which is not possible for cases,

that is, controls can be in situation five from Figure 3.

Our solution is straightforward: the controls are required to initi-

ate treatment before the calendar time of event of their matched

case. This ensures that the time-trend of exposure is the same for

cases and controls when there is no effect of treatment on event.

Note that Tj is nowhere in the calculations which implies that we can

sample among all subjects at risk at the failure time of the case, includ-

ing other future cases, as long as they initiate treatment before the

calendar time of event. This is in line with the traditional risk-set sam-

pling paradigm but unlike the standard sampling of controls in a case-

non-case study, where controls are sampled among subjects without

an event at end-of-study. This sampling is similar to the sampling in

the nested case–control design and can be seen as a mixture of a clas-

sic case-time-control design and a case–case-time design.10 Poten-

tially this can lead to a lower bias when cases and controls have

different treatment distributions since we would expect future cases

to have a more similar treatment distribution than controls.11 Further-

more, it makes it possible to use the design when we have random

censoring as opposed to constant censoring at τ like above (see

Appendix A). From here on, sampling among all subjects at risk who

have received treatment before the event time, will be termed “the
proposed sampling method.”

4 | EXAMPLE

To illustrate the difference between the standard and the proposed sam-

pling methods suppose you have the dataset in Figure 4. The first three

subjects are cases and the rest are controls. Normally, we would just

sample among all the controls. Which subjects can be sampled for case

number 1 according to the proposed method in this article? The subject

must be at risk at the calendar time of event, but initiate treatment

before. All subjects are at risk at the calendar time of event of case num-

ber 1, but subjects 2, 4, and 5 initiate treatment after, and hence cannot

be sampled. All subjects except subjects 1 and 4 can be sampled for case

number 2. Subject 1 cannot since it is not at risk at the calendar time of

event of case number 2 and subject 4 cannot since it initiates treatment

after. All controls can be sampled for case number 3, but subjects 1 and

2 cannot since they are not at risk at the calendar time of event of case

number 3. This means that there is no difference between the standard

and the proposed ways of sampling controls for case number 3.

5 | SIMULATION

The standard and the proposed ways of sampling controls are com-

pared in a simulation study. The data are simulated in the same

setup as in the previous section with exactly one treatment period

with a fixed duration, D1, which is 6 years in this simulation study.

Treatment initiation is simulated from a uniform distribution on the

interval [0, 25]. It might seem surprising that we get a time-trend in

exposure despite simulating from a uniform distribution. The reason

is described in Appendix D. The survival times have been simulated

from proportional hazards models with a baseline hazard rate of

F IGURE 4 Event time of 13+ means subjects did not have an
event in the study period. Crosses mean subject cannot be sampled
for given case, tick marks mean subject can be sampled. ID, subject
id, L, treatment initiation, T, event time
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0.001 and hazard ratios of exposure given by 1, 0.5, 2, and 5. The

time span between the event time and the reference time, D2, is

equal to 0.75, and the end of study, τ, is 13. We carried out 10 000

simulations, each with 100 000 subjects, for each HR. The results

are summarized in Table 1.

We clearly see the estimates are biased if we do not sample

according to our proposal. In particular, we get an OR > 1 when treat-

ment and event are simulated independently in the first row of

Table 1. The proposed sampling method leads to estimates close to

the true trend-adjusted OR.

One simulation like above with HR = 1, corresponding to no

effect of treatment on outcome, and with 1 million subjects, has been

run to further illustrate the problem with sampling in the standard

way. The results are displayed in Table 2. Substantially more subjects

are unexposed at both event and reference among controls than

among cases when controls are sampled in the standard way. The

results for cases and controls are very similar when controls are sam-

pled in the proposed way.

6 | EMPIRICAL DATA EXAMPLE

The method is implemented on real world data to illustrate the impor-

tance of a correct sampling of controls in studies based on databases.

We used a case–control dataset which has been described in detail in

previous publications.12 In brief, we identified all patients admitted to

a hospital in the Funen area in Denmark with severe upper gastroin-

testinal bleeding during 1995–2006. Hence, the year 1995 serves as

time 0 in this case. All cases were manually validated by review of the

discharge summary. Controls were sampled by a risk-set strategy, that

is, for each case, 10 controls were recruited who were born in the

same year, had the same sex, were residents of the Funen area and

who had not yet been hospitalized with upper gastrointestinal bleed-

ing. Controls were assigned an index date identical to the admission

date of the corresponding case. Data on use of prescription drugs

were retrieved from the OPED database.13 We only included the sub-

jects who had had at least one prescription for a nonsteroidal anti-

inflammatory drug (NSAID) from the data to emulate the setup in this

article. We were interested in the association between the use of

NSAIDs and the occurrence of upper gastrointestinal bleeding. It

should be noted that occurrence of upper gastrointestinal bleeding is

an absolute contraindication to treatment with NSAID. Hence the

dataset reflects the setup in this article. Subjects were considered

exposed from the day of dispensing until the end of prescription dura-

tion. Prescription duration was calculated under the assumption of a

daily intake of one defined daily dose (DDD/d). As a sensitivity analy-

sis, we redid the analysis under the assumption of 0.5 DDD/d.

TABLE 1 Geometric means of trend-adjusted OR estimates from simulation study

True HR True trend-adjusted OR

Observed OR with

proposed sampling

Observed OR with

standard sampling

1.0 1.00 1.00 1.43

0.5 0.57 0.56 0.72

2.0 1.81 1.84 2.76

5.0 4.22 4.32 6.82

TABLE 2 Exposure patterns among cases, controls sampled the
standard way, and controls sampled in the proposed way in the
simulation study

Cases

Reference

Unexposed Exposed

Event Unexposed 759 187

Exposed 355 1992

Controls (standard)

Reference

Unexposed Exposed

Event Unexposed 2502 81

Exposed 98 612

Controls (proposed)

Reference

Unexposed Exposed

Event Unexposed 767 190

Exposed 360 1976

TABLE 3 NSAID exposure patterns among upper gastrointestinal
bleeding cases, controls sampled the standard way, and controls
sampled in the proposed way when exposure is defined assuming
DDD/d = 1

Cases

Reference

Unexposed Exposed

Event Unexposed 1633 148

Exposed 525 363

Controls (standard)

Reference

Unexposed Exposed

Event Unexposed 2349 106

Exposed 101 113

Controls (proposed)

Reference

Unexposed Exposed

Event Unexposed 2325 115

Exposed 125 104
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The standard and the proposed sampling methods are imple-

mented on these data. Choosing the interval between event and ref-

erence is a trade-off between on one hand having enough time to get

enough subjects with a discordant exposure history for the design to

work, and on the other hand not have too much time-trend in expo-

sure to adjust for. We have chosen half a year for these data. The

exposure patterns when assuming DDD/d = 1 can be seen in Table 3.

We notice that fewer controls are unexposed at both event and refer-

ence when sampling controls the proposed way compared to the stan-

dard way as expected, although the difference is small.

The results of the conditional logistic regression model (1) are

shown in Table 4. We get a lower estimate of the trend-adjusted OR

when sampling controls in the proposed way no matter what DDD/d

we assume. This indicates that a part of the OR when sampling con-

trols in the standard way is due to a different time-trend of exposure

between cases and controls. Previous work on the association

between NSAID and upper gastrointestinal bleeding has been using

case–control studies, which could suffer from some confounding. The

case-time-control design implicitly adjusts for time stable part of this

confounding, but an incorrect sampling of controls could lead to addi-

tional bias due to an added difference in time-trend of exposure

between cases and controls. Our proposal removes time-stable con-

founding by design and correctly adjusts for time-trend in exposure. It

should also be noted that the reported odds ratio from a case–control

study cannot be compared one-to-one with the odds ratio from the

case-time-control design owing to the fact that the comparison made

differs by design. That said, results from the case-time-control design

are comparable to the results found in previous work despite the dif-

ferent approaches to sampling controls. Thus the conclusions are in

essence not affected by how we sample controls.12

7 | DISCUSSION

By mathematical analysis and simulation, we have shown how the

classical case-time-control design induces a biased estimate of the

effect of treatment on event in a cohort of drug users when outcome

prevents further treatment. Furthermore, we have shown that this

bias disappears if we add the extra requirement that controls have ini-

tiated treatment before the calendar time of the event of their mat-

ched case. The change in sampling of controls is shown to matter, not

just in theory, but also in an empirical data example. Moreover, the

mathematical framework for analyzing the case-time-control design in

this article paves the way for dealing with competing risks and random

censoring. Additionally, it makes it possible to analyze special setups

for the design, like the one considered in this article, thus making the

design more flexible.

This means that the design can still be used for outcomes that

prevent further treatment in a cohort of drug users.

A downside of the suggested case-time-control design, and the

case-time-control design in general, is that it is challenging to inter-

pret the trend-adjusted OR if we in fact do find an association

between treatment and event unless we make further assumptions.

Moreover, the treatment distribution must be the same for cases

and controls, although the problem of a different time-trend for

cases and controls can be resolved to some extent by using the

case–case-time design. Nevertheless, the design leads to a trend-

adjusted OR of one when there is no effect of treatment on out-

come and controls are sampled in the proposed way. Thus, the

design can be used to answer the question of whether a given out-

come is a side-effect of treatment while automatically adjusting for

time-invariant confounders.

In summary, we have managed to solve a concrete problem for

the case-time-control design and developed a new mathematical

framework that potentially can be used to solve other problems in the

case-time-control design, and other self-adjusted designs. The short-

comings are all related to the case-time-control design and are thus

not specific for our study. More research is needed to resolve those

issues.
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Appendix A: General case 
The results in this paper are a special case of a more general result presented below. Let 

{Z(t)} be the treatment process (Z(t) = 1 meaning that the patient is being treated at time t, 

Z(t) = 0 meaning that the patient is not being treated at time t). Let L := inf{t | Z(t) = 1} be 

the time of first treatment, T be the event time, Δ be the time between event and reference, C 

be the censoring time, and X be a competing risk. Let C be independent of everything and X 

independent of everything except for T. We have the following odds-ratios 

ORcase =
P( Zi(Ti) = 1, Zi(Ti − ∆) = 0 ∣∣ Li ≤ Ti ≤ min{ Ci, Xi} )

P( Zi(Ti) = 0, Zi(Ti − ∆) = 1 ∣∣ Li ≤ Ti ≤ min{ Ci, Xi} )
, 

ORctrl

=
𝑃( 𝑍𝑗(𝑇𝑖) = 1, 𝑍𝑗(𝑇𝑖 − Δ) = 0 ∣∣ 𝐿𝑖 ≤ 𝑇𝑖 ≤ min{ 𝐶𝑖, 𝑋𝑖}, 𝑇𝑖 ≤ min{ 𝑇𝑗 , 𝐶𝑗 , 𝑋𝑗}, 𝐿𝑗 ≤ min{ 𝑇𝑗 , 𝐶𝑗 , 𝑋𝑗} )

𝑃( 𝑍𝑗(𝑇𝑖) = 0, 𝑍𝑗(𝑇𝑖 − Δ) = 1 ∣∣ 𝐿𝑖 ≤ 𝑇𝑖 ≤ min{ 𝐶𝑖, 𝑋𝑖}, 𝑇𝑖 ≤ min{ 𝑇𝑗 , 𝐶𝑗 , 𝑋𝑗}, 𝐿𝑗 ≤ min{ 𝑇𝑗 , 𝐶𝑗 , 𝑋𝑗} )
. 

In this notation the parameter exp(β2) is given by 

ORcase

ORcontrol
. 

We need the following conditional probability to rewrite the probabilities above: 

P( Zi(Ti) = 1, Zi(Ti − Δ) = 0 ∣∣ Li ≤ Ti = t ≤ min{ Ci, Xi} ) = 

P(Zi(t) = 1, Zi(t − Δ) = 0, Ti = t ≤ min{ Ci, Xi})

P(Ti = t, Li ≤ t, Xi ≥ t, Ci ≥ t)
= 

P(Zi(t) = 1, Zi(t − Δ) = 0, Ti = t, Xi ≥ t)

P(Ti = t, Li ≤ t, Xi ≥ t)
. 

Assume independence between T and L, and between T and Z(t) for all t. Then the above 

probability becomes 

P( Zi(Ti) = 1, Zi(Ti − Δ) = 0 ∣∣ Li ≤ Ti = t ≤ min{ Ci, Xi} ) =
P(Zi(t) = 1, Zi(t − Δ) = 0)

P(Li ≤ t)
 

which leads to 

P( Zi(Ti) = 1, Zi(Ti − Δ) = 0 ∣∣ Li ≤ Ti ≤ min{ Ci, Xi} ) = 



∫ P(Ti = t, Xi ≥ t)P(Ci ≥ t)
∞

0

⋅ P(Zi(t) = 1, Zi(t − Δ) = 0) dt 

P(Zi(Ti) = 0, Zi(Ti – Δ) = 1 | Li ≤ Ti ≤ min{Ci, Xi}) is found in a similar way and is given by 

∫ P(Ti = t, Xi ≥ t)P(Ci ≥ t)
∞

0

⋅ P(𝑍𝑖(𝑡) = 0, 𝑍𝑖(𝑡 − Δ) = 1) dt. 

The sampling of controls is done among all subjects at risk at the failure time of the case. The 

equations for controls are then: 

P( Zj(Ti) = 1, Zj(Ti − Δ) = 0 ∣∣ Li ≤ Ti = t, min{ Xi, Ci} ≥ t, t ≤ min{ Tj, Cj, Xj}, Lj ≤ min{ Tj, Cj, Xj} )

= pij ⋅
P(Zj(t) = 1, Zj(t − Δ) = 0, t ≤ min{ Tj, Cj, Xj})

P(t ≤ min{ Tj, Cj, Xj}, Lj ≤ min{ Tj, Cj, Xj})
, 

where pij is the probability of control j being sampled as a control for case i. Then 

𝑃( 𝑍𝑗(𝑇𝑖) = 1, 𝑍𝑗(𝑇𝑖 − Δ) = 0 ∣∣ 𝐿𝑗 ≤ min{ 𝑇𝑗 , 𝐶𝑗 , 𝑋𝑗} ) = 

𝑝𝑖𝑗 ⋅ ∫ 𝑃(𝑇𝑖 = 𝑡, 𝑋𝑖 ≥ 𝑡)𝑃(𝐿𝑖 ≤ 𝑡)𝑃(𝐶𝑖 ≥ 𝑡)
∞

0

⋅
𝑃(𝑍𝑗(𝑡) = 1, 𝑍𝑗(𝑡 − Δ) = 0)

𝑃(𝐿𝑗 ≤ min{ 𝑇𝑗 , 𝐶𝑗 , 𝑋𝑗})
 d𝑡 

The difference between the case and the control odds-ratios disappears if we require Lj ≤ Ti 

and assume the same distribution of {Zi(t)} and {Zi(t)}, i.e. cases and controls have the same 

treatment distribution. Thus, exp(β2) is equal to one in this case when controls are sampled 

according to our proposal. 

 

Appendix B: Interpretation of trend-adjusted OR 
We have demonstrated that the trend-adjusted OR is one in the case-time-control design 

when there is no effect of treatment on event, and controls are sampled in the proposed way. 

But what if we do have an association between treatment and event? The intuition behind the 

case-time-control design is the following: if more people are exposed at event than at 

reference, it is either because we have an association between exposure and event or because 

we have a time-trend in exposure. We remove the time-trend of exposure using controls and 



expect the remaining association to reflect the pure effect from exposure on event. Hence, we 

would expect a trend-adjusted OR greater than one when treatment increases risk of event. 

But is that certain to happen? Let {𝑍𝑖(𝑡)}𝑡∈[0,τ] be the exposure history of subject i, (Zi (t) = 1 

meaning that subject i is exposed at time t, Zi (t) = 0 meaning that subject i is unexposed at 

time t). Let us assume the following frailty model: 

λi( t ∣∣ Ui, Zi(t) ) = λ( t ∣∣ Zi(t) ) ⋅ Ui.                                                                                       (4) 

The model says that the hazard rate at calendar time t only depends on t, the individual 

specific frailty, Ui, and treatment status at time t, but not on previous treatment history. 

It might seem a bit unnatural that the hazard rate is a function of calendar time rather than 

age, but it is assumed that the effect of age, or rather birth year, is reflected by the frailty Ui, 

which reflects the confounders we want to adjust for implicitly by using a self-adjusted 

design. Assume without loss of generality that 𝐸(𝑈𝑖) = 1 for all i, and assume independence 

between {Zi (t)} and Ui. As in Appendix A, let 𝐿 ≔  inf {𝑙 ∣ 𝑍(𝑙)  =  1 }) be the time of first 

treatment. In addition, assume λ𝑖( 𝑡 ∣∣ 𝑍𝑖(𝑡), 𝑈𝑖 ) so small that 𝑆( 𝑡 ∣∣ 𝑍𝑖(𝑡), 𝑈𝑖 ) ≈ 1 in the 

study period (note that this implies 𝑃( 𝑇𝑖 = 𝑡 ∣∣ 𝑍𝑖(𝑡), 𝑈𝑖 ) ≈ λ𝑖( 𝑡 ∣∣ 𝑍𝑖(𝑡), 𝑈𝑖 )). We can 

calculate the probabilities in the OR for cases when we have an association between 

treatment and event, corresponding to λ( 𝑡 ∣ 1 ) > λ( 𝑡 ∣ 0 ) for all t, using the following 

conditional probability:  

𝑃( 𝑍𝑖(𝑡) = 1, 𝑍𝑖(𝑡 − Δ) = 0, 𝑇𝑖 = 𝑡 ∣∣ 𝑈𝑖 ) = 

P( Zi(t) = 1, Zi(t − Δ) = 0 ∣∣ Ui ) ⋅ P( Ti = t ∣∣ Zi(t) = 1, Zi(t − Δ) = 0, Ui ) ≈ 

P(Zi(t) = 1, Zi(t − Δ) = 0) ⋅ λ( t ∣ 1 ) ⋅ Ui. 

We get 𝑃(𝑍𝑖(𝑡) = 1, 𝑍𝑖(𝑡 − Δ) = 0, 𝑇𝑖 = 𝑡) by integrating the frailty out: 

P(Zi(t) = 1, Zi(t − Δ) = 0, Ti = t) ≈ P(Zi(t) = 1, Zi(t − Δ) = 0) ⋅ λ( t ∣ 1 ) 

The same procedure yields  

P(Zi(t) = 0, Zi(t − Δ) = 1, Ti = t) ≈ P(Zi(t) = 0, Zi(t − Δ) = 1) ⋅ λ( t ∣ 0 ). 



This means that the OR of treatment among cases approximately is equal to 

𝑂𝑅case ≈
∫ λ( 𝑡 ∣ 1 )

τ

0
⋅ 𝑃(𝑍𝑖(𝑡) = 1, 𝑍𝑖(𝑡 − Δ) = 0) 𝑑𝑡

∫ λ( 𝑡 ∣ 0 )
τ

0
⋅ 𝑃(𝑍𝑖(𝑡) = 0, 𝑍𝑖(𝑡 − Δ) = 1) 𝑑𝑡

. 

Note that if we had proportional hazards, λ(t | Z(t)) = λ0(t)e
γZ(t), and exchangeability of 

exposures between the event and the reference times, 𝑃(𝑍𝑖(𝑡) = 1, 𝑍𝑖(𝑡 − Δ) = 0) =

𝑃(𝑍𝑖(𝑡) = 0, 𝑍𝑖(𝑡 − Δ) = 1), corresponding to no exposure time-trend, then the OR for cases 

would equal the hazard ratio, 𝑒γ. Thus, the OR in the case-crossover design can be 

interpreted as a hazard ratio if the event is rare, there is no time-trend in exposure, and events 

arise according to a proportional hazards model. The OR of treatment among the controls is 

𝑂𝑅ctrl =

∫
𝑃(𝑇𝑖 = 𝑡, 𝐿𝑖 < 𝑡)

𝑃(𝑇𝑗 > 𝑡, 𝐿𝑗 < 𝑡)

𝜏

0
𝑃(𝑍𝑗(𝑡) = 1, 𝑍𝑗(𝑡 − Δ) = 0, 𝑇𝑗 > 𝑡) 𝑑𝑡

∫
𝑃(𝑇𝑖 = 𝑡, 𝐿𝑖 < 𝑡)

𝑃(𝑇𝑗 > 𝑡, 𝐿𝑗 < 𝑡)

τ

0
𝑃(𝑍𝑗(𝑡) = 0, 𝑍𝑗(𝑡 − Δ) = 1, 𝑇𝑗 > 𝑡) 𝑑𝑡

 

This can be rewritten by calculating the probabilities in the integrals explicitly. The following 

conditional probability is needed for that: 

𝑃( 𝑍𝑗(𝑡) = 1, 𝑍𝑗(𝑡 − Δ) = 0, 𝑇𝑗 > 𝑡 ∣∣ 𝑈𝑗 )  = 

𝑃(𝑍𝑗(𝑡) = 1, 𝑍𝑗(𝑡 − Δ) = 0) ⋅ 𝑃( 𝑇𝑗 > 𝑡 ∣∣ 𝑍𝑗(𝑡) = 1, 𝑍𝑗(𝑡 − Δ) = 0, 𝑈𝑗 ) ≈ 

P(Zj(t) = 1, Zj(t − Δ) = 0). 

Then we also have 

𝑃(𝑍𝑗(𝑡) = 1, 𝑍𝑗(𝑡 − Δ) = 0, 𝑇𝑗 > 𝑡) ≈ 𝑃(𝑍𝑗(𝑡) = 1, 𝑍𝑗(𝑡 − Δ) = 0). 

Likewise, we have 

𝑃(𝑍𝑗(𝑡) = 0, 𝑍𝑗(𝑡 − Δ) = 1, 𝑇𝑗 > 𝑡) ≈ 𝑃(𝑍𝑗(𝑡) = 0, 𝑍𝑗(𝑡 − Δ) = 1), 

𝑃(𝑇𝑗 > 𝑡, 𝐿𝑗 < 𝑡) ≈ 𝑃(𝐿𝑗 < 𝑡). 

Last, but not least: 

P( Ti = t, Li < t ∣∣ Ui ) = 

P( Li < t ∣∣ Ui ) ⋅ P( Ti = t ∣∣ Li < t, Ui ) = 



P(Li < t) ⋅ (P( Ti = t ∣∣ Li < t, Ui, Zi(t) = 1 ) ⋅ P( Zi(t) = 1 ∣∣ Li < t, Ui )

+ P( Ti = t ∣∣ Li < t, Ui, Zi(t) = 0 ) ⋅ P( Zi(t) = 0 ∣∣ Li < t, Ui )) ≈ 

𝑃(𝐿𝑖 < 𝑡) ⋅ (𝑃( 𝑍𝑖(𝑡) = 1 ∣∣ 𝐿𝑖 < 𝑡 ) ⋅ λ( 𝑡 ∣ 1 ) ⋅ 𝑈𝑖 + 𝑃( 𝑍𝑖(𝑡) = 0 ∣∣ 𝐿𝑖 < 𝑡 ) ⋅ λ( 𝑡 ∣ 0 ) ⋅ 𝑈𝑖)  

Again, we integrate the frailties out to get 𝑃(𝑇𝑖 = 𝑡, 𝐿𝑖 < 𝑡). Note that we have the following 

inequality: 

𝑃(𝐿𝑖 < 𝑡) ⋅ λ( 𝑡 ∣ 0 ) < 𝑃(𝑇𝑖 = 𝑡, 𝐿𝑖 < 𝑡) < 𝑃(𝐿𝑖 < 𝑡) ⋅ λ( 𝑡 ∣ 1 ), 

which can be used to show 

𝑂𝑅ctrl <
∫ λ( 𝑡 ∣ 1 )

τ

0
⋅ 𝑃(𝑍𝑗(𝑡) = 1, 𝑍𝑗(𝑡 − Δ) = 0) 𝑑𝑡

∫ λ( 𝑡 ∣ 0 )
τ

0
⋅ 𝑃(𝑍𝑗(𝑡) = 0, 𝑍𝑗(𝑡 − Δ) = 1) 𝑑𝑡

≈ 𝑂𝑅case. 

This implies exp(𝛽2) =
𝑂𝑅case

𝑂𝑅ctrl
> 1, which means that an association between treatment and 

event, corresponding to λ( 𝑡 ∣ 1 ) > λ( 𝑡 ∣ 0 ) for all t, implies a trend-adjusted OR strictly 

greater than 1.  

 

Appendix C: Within cluster dependence 
The proposed sampling method gives rise to a dependence between the case and its matched 

control. This is because both the case and its matched control initiate treatment before the 

event time of the case, which is not necessarily true for all other subjects. Thus, the 

independence assumption in the conditional logistic regression is false. This does not 

influence the estimation of the trend-adjusted OR, but we have to take the dependence into 

account when we estimate the standard error (SE) of β2 from (1).1 Here we derive a sandwich 

estimator that does that. This estimator is easy to use with existing software.2 Let β =

(β1, β2) from model (1), let 𝑆𝑖
1(β) be the contribution to the score function from the i'th case, 

and let 𝑆𝑖
2(β) be the contribution to the score function from the i'th control. Then the 

likelihood equation can be written as: 



0 = ∑ Si
1(β)

n

i=1

+ ∑ Si
2(β)

n

i=1

=: Sn(β) 

This is exactly the equation that is solved by the conditional logistic regression. However, 

𝑆𝑖
1(β) and 𝑆𝑖

2(β) for i = 1, ..., n are treated as independent by the standard conditional logistic 

regression when estimating the variance, which they are not due to the fact that the first 

exposure has to be before the event time of the case for both the case and its matched control, 

but not necessarily for other observations. Instead the true asymptotic variance is derived as 

follows: use a Taylor expansion and rearrange to get:  

√n(βn̂ − β0) = − (
1

n
DβSn(β0))

−1

⋅
1

√n
⋅ Sn(β0) + o(1) 

where 𝐷β𝑆𝑛(β0) is the derivative of 𝑆𝑛(β0) wrt. β, and β𝑛̂ is the MLE based on the first n 

pairs of cases and controls. Make the following definitions: 

An =
1

n
∑ ∑ Dβ

2

j=1

n

i=1

Si
j(β0) 

Bn =
1

n
∑ (∑ Si

j(β0)

2

j=1

)

⊗2
n

i=1

 

A = lim
n→∞

An 

B = lim
n→∞

Bn 

Then we get the asymptotic distribution of β𝑛̂: 

√n(βn̂ − β0) = −An
−1

1

√n
Sn(β0) + o(1) → 𝒩(0, A−1BA−1) 

The asymptotic variance, 𝐴−1𝐵𝐴−1, is exactly the sandwich estimator.  

The sandwich estimator and the default conditional logistic regression estimator of the SE of 

β2̂, i.e. the log of the trend-adjusted OR estimator, are compared in Table 1 based on the 

simulations from the main text. The default estimator of the SE turns out to be very close to 



the standard deviation (SD) of the estimates of β2. Thus, the sandwich estimator does not 

improve the precision of the SE estimate considerably in this setup. However, we do not 

know if this is the case in all practical applications. Furthermore, the sandwich estimator 

consistently produces a lower SE than the default estimator. Consequently, we gain efficiency 

by taking the cluster dependence into account. The 95 % (Wald) confidence intervals cover 

the true trend-adjusted OR very close to 95 % of the time in these simulations when using the 

sandwich estimator. The confidence intervals cover the true trend-adjusted OR too often 

when using the default estimator of the SE. Thus, it is still advisable to use the sandwich 

estimator.  

Table 1 about here 

 

Appendix D: Time-trend in exposure despite uniform treatment 

initiation 
The attentive reader might wonder why we see such a strong time-trend among cases when 

treatment initiation is simulated from a uniform distribution and treatment and event are 

independent. The OR for cases in Table 4 is 355/187= 1.9 in a setup where one might expect 

no time-trend and hence an OR of 1. The time-trend emerges because cases with an event 

time less than D1 + D2, i.e. 6.75 in this simulation, have a higher chance of being exposed at 

event than at reference. The extreme case is for those whose event time is before D2 where 

the reference time is negative. These cases will by design be exposed at event but not at 

reference since we only observe drug users, i.e. subjects that have their first treatment in the 

study period. In this extreme case it is impossible for them to end up in the first three 

scenarios in Figure 1. Those with an event time between D2 and D1 will always be exposed at 

event but only sometimes at reference so these cases will also, in theory, have an infinite 

time-trend. They can only end up in the last two scenarios in Figure 1. Those with an event 



time between D1 and D1 + D2 can end up in the last three scenarios. They will still have a 

time-trend of exposure since they are more likely to have treatment initiation between the 

event and the reference time, and consequently be exposed at event but not at reference, than 

they are of initiating treatment between time 0 and time T – D1 where they would be exposed 

at reference but not at event. 

The uniform distribution ensures no time-trend for those with an event time greater than D1 + 

D2. The exposure patterns for those cases are displayed in Table 7 and, as expected, we get 

OR = 172/169 = 1.02, which is close to 1. 

Table 2 about here 
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Tables 
Table 1: Sample means of SEs and coverage probabilities for 95% (Wald) confidence 

intervals. 

True HR Sample SD Sandwich (coverage) Default (coverage) 

1.0 0.39 0.39 (95.3 %) 0.40 (96.0 %) 

0.5 0.48 0.47 (95.1 %) 0.49 (96.1 %) 

2.0 0.33 0.33 (95.3 %) 0.34 (95.8 %) 

5.0 0.29 0.28 (95.5 %) 0.29 (95.7 %) 

 

Table 2: Exposure patterns among cases with an event time greater than 6.75. 

 

  Reference 

  Unexposed Exposed 

Event 

 

Unexposed 759 169 

Exposed 172 1327 
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We introduce causal inference reasoning to cross-over trials, with a focus on Thorough QT (TQT) studies.
For such trials, we propose different sets of assumptions and consider their impact on the modelling strategy
and estimation procedure.

We show that unbiased estimates of a causal treatment effect are obtained by a g-computation approach
in combination with weighted least squares predictions from a working regression model. Only a few natural
requirements on the working regression and weighting matrix are needed for the result to hold. It follows
that a large class of Gaussian linear mixed working models lead to unbiased estimates of a causal treatment
effect, even if they do not capture the true data generating mechanism.

We compare a range of working regression models in a simulation study where data are simulated from
a complex data generating mechanism with input parameters estimated on a real TQT data set. In this
setting, we find that for all practical purposes working models adjusting for baseline QTc measurements
have comparable performance. Specifically, this is observed for working models that are by default too
simplistic to capture the true data generating mechanism.

Cross-over trials and particularly TQT studies can be analysed efficiently using simple working regres-
sion models without biasing the estimates for the causal parameters of interest.

Key words: Bias; Causal inference; Cross-over trials; Efficiency; TQT studies;
Supporting Information for this article is available from the author or on the WWW under
http://dx.doi.org/10.1022/bimj.XXXXXXX

1 Introduction

A TQT study is an essential component of drug development, ensuring drug safety for patients. Therefore,
it is a regulatory requirement to conduct such trials (Food and Drug Administration, 2005). These trials
have complicated designs in an attempt to minimize the sample size. This complexity has in turn led to
a long-standing debate and several suggestions on how to best model the resulting data, and in particular
how to use baseline measurements (Lu, 2014; Kenward and Roger, 2010; Orihashi et al., 2021; Schall and
Ring, 2011; Orihashi and Kumagai, 2021). For a standard TQT study, healthy volunteers (International
Council for Harmonisation, 2019) are enrolled with the purpose of obtaining electrocardiograms (ECGs)
from each subject under different treatment conditions. An ECG measures the electrical output from the
heart, resulting in replicates of graphical outputs as illustrated in Figure 1. The output is characterized by
different waves, complexes, and intervals. In Figure 1 we see the P, Q, R, S, and T waves. The interval
from the beginning of the Q wave to the end of the T wave is called the QT interval, and is measured in
milliseconds (ms). The QT interval measures the time it takes the heart to repolarize and prepare for the
next beat. The longer the QT interval, the longer the time between heart beats, and the less oxygen is
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transported to cells in the body. Specifically, prolongation of the QT interval has been shown to be related
to an increased risk of Torsades de Pointes, a malignant ventricular arrhythmia. Thus, it is undesirable for
the QT interval to be prolonged due to drug exposure. The length of the QT interval is positively associated
with the length of the RR interval, i.e. the interval from the R wave on an ECG until the next R wave on
the ECG. Therefore, QT intervals are standardized in order to get a QTc (QT corrected) measurement
corresponding to a particular length of the RR interval (typically 1 second). An example of a commonly
used correction is the Fridericia correction, which is given by

QTc =
QT
3
√
RR

.

The purpose of the statistical analysis in a TQT study is to formally assess if clinically relevant prolongation
is present based on the QTc measurements (Patterson and Jones, 2006).

TQT studies are predominantly conducted as cross-over trials in an attempt to lower sample size and
eliminate between subject variation by paired comparisons of different treatments. In a cross-over trial,
each subject is randomized to one of several treatment sequences that uniquely determines the treatment
they receive at any given treatment period throughout the trial. Within each period, a baseline QTc mea-
surement is obtained just prior to treatment, followed by a number of post treatment QTc measurements
obtained at pre-defined time points following treatment (see Figure 2 for the two-period case). Each pair
of consecutive periods will be separated by a washout period to minimize the risk of carry-over effects, i.e.
any effects of treatment from the previous period on the QTc measurements in the current period. From a
practical point of view, the main challenge with cross-over designs is that the washout period needs to be
tailored to the half-life of drug concentration to reflect proper washout of the drug. Specifically, if the half
life is long, an even longer wash-out period is required in order to avoid carry-over effects (typically 5 half
lives). Ultimately, this may impose a very long study period for the subjects enrolled in the study. This is
clearly not optimal and may also prove to be a challenge with regard to case retention. In such situations,
a parallel arm design may be more feasible (Food and Drug Administration, 2005).

The causal inference literature, and recently also official regulatory recommendations, have increased
the focus on clearly defining what we are actually trying to estimate. This has led to the endorsement of
the so called estimand framework within regulatory guidance documents and the causal roadmap concept
within the causal inference literature (International Council for Harmonisation, 2019; van der Laan and
Rose, 2011). One of the central points made here is that we should enable our research question to be
defined in terms of the trial data and not just in terms of a specific model. That said, we would still want
to use models in order to gain efficiency or eliminate bias. This is in line with recent regulatory guidance
documents that encourage the active use of baseline variables in randomized trials for gaining precision
of estimated treatment effects (European Medicines Agency, 2015; Food and Drug Administration, 2021).
The developments in this paper aim to support this push towards clearer and more focused statistical proce-
dures. In particular, the causal inference approach we present facilitates a clear and transparent definition
of our target of estimation in cross-over trials and specifically in TQT studies. Similar developments are al-
ready available in the literature for one-period trials. Here, estimators based on standard regression models
have been shown to be unbiased for causal parameters Rosenblum and Steingrimsson (2016); Wang et al.
(2021). Moreover, appreciable gains in efficiency compared to marginal estimators for causal effects have
been demonstrated Robinson and Jewell (1991); Hernández et al. (2006); Bartlett (2018). We extend these
results to cross-over trials, where we show that working mixed models with compound symmetry will al-
low practitioners to provide sound inference without having to resort to very complex models in an attempt
to capture the true data generating mechanism with all the practical challenges, for instance convergence
issues, that follow.

The outline of the paper is as follows. In the next section we introduce the basic notation used in the
paper and in that context define the fundamental assumption of no carry-over in a cross-over trial. We
briefly introduce the concept of counterfactual outcomes and define the causal quantities of interest along-
side the data assumptions needed to identify these quantities directly from the data. Section 3 is dedicated
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to deriving and assessing the theoretical performance of a number of causally motivated estimators. The
section also contains the main result of this paper, which shows that certain types of working models yield
unbiased estimates of the causal target parameters under arbitrary misspecification of the working model.
In Section 4, we analyse data from a real TQT study using a range of working models that in theory lead
to unbiased estimates of the causal target parameters according to the main result of this paper. Section 5
is dedicated to comparing the same working models in a simulation study cast around the data example in
order to evaluate performance in a realistic scenario. We conclude the paper with a discussion in Section
6.

2 Notation and Assumptions

In the following, we introduce the notation and causal assumptions needed in order to identify the target of
estimation. Note that TQT studies are concrete examples of crossover trials with baseline measurements
and several outcomes per period. All the results in this paper apply to general crossover trials. Specifically,
Xp in the following may comprise of covariates measured at baseline, or at least independent of treatment
assignment, used for covariate adjustment for the outcome(s) in period p. This could also include period
effects and baseline measurements from other periods. Let Yipt denote the QTc measurement for subject
i in period p at time t, i = 1, . . . , n, p = 1, . . . , P, t = 1, . . . , T . Denote the baseline measurement for
subject i in period p byXip, and treatment by Zip. TQT studies tend to have as many treatments as periods.
Thus, we will denote treatments by 0, . . . P − 1, where Zip = 0 corresponds to subject i receiving placebo
in period p. Often we will suppress the i since we assume the subjects are independent draws from the same
distribution. Furthermore, let Yp = (Yp1, . . . , YpT )

T denote the vector of post-baseline measurements in
period p.

In line with the informed choice of washout period in TQT studies, we assume the wash-out period
has been sufficient to ensure no carry-over effects. Under this assumption, our data can be described
by the Directed Acyclic Graph (DAG) in Figure 3 in the two-period case. Note that the DAG has no
arrows from baseline measurements to post-baseline measurements, since we do not expect a causal effect
of the baseline measurements. Instead, we expect any association between baseline measurements and
post-baseline measurements to arise from the latent variables, W , W1, and W2 from Figure 3. The latent
variableW reflects the dependence owing to measurements being from the same subject, whereas the latent
variables, W1 and W2 reflect the dependence between measurements from the same period, i.e. temporary
traits. Despite the lack of arrows between baseline and post-baseline measurements, it still makes sense to
adjust for baseline measurements, for example in a regression model, because we do not observe the latent
variables, in which case the baseline measurements act as proxies for the latent variables. However, the
lack of an arrow between baseline and post-baseline measurements only has an impact on Assumption 1
in the remaining part of the manuscript, and doesn’t matter for the theoretical results such as Theorem 1.
The DAG in Figure 3 implies the following about the data distribution:

Assumption 1 (No carry-over) Let x = (x1, . . . , xp)
T , and likewise for z and y, and let fx(x) be the

density for variable x and likewise for all other variables. The distribution of our data satisfy the Markov
factorization property with respect to the DAG in Figure 3 (Peters et al., 2017), i.e., the joint density of our
data can be written as

f(z, w, x, y) =fz(z)fw(w,w1, . . . , wP )fx(x|w,w1, . . . , wP )fy(y|z, w,w1, . . . , wP )

=fz(z)fw(w,w1, . . . , wP )
P∏

p=1

fxp
(xp|w,wp)fyp

(yp|zp, w, wp).

In accordance with Figure 3, Assumption 1 states that the conditional distribution of y in period p only
depends on treatment in period p and the latent variables w and wp. Assumption 1 reflects the DAG in
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Figure 1, and is a good starting point for exploring the theory behind crossover trials. Unfortunately, more
assumptions are needed in order to be able to identify any quantity of interest from data. To do this, we
take a causal approach to crossover studies, in the following.

By doing so, we provide a clearly stated research question that is completely disentangled from the
modelling of the data. This exercise provides complete clarity on what assumptions about the data gener-
ating mechanism are necessary to answer the research question and sets them apart from purely technical
assumptions made during the modelling stage of the estimation.

Let Y z1,...,zP
p denote the post-baseline QTc measurements we would have made in period p if, possibly

counter to fact, the subject had received treatments z1, . . . , zP . Up front, it seems reasonable to assume that
the potential outcome in period p is independent of future treatments, so that the counterfactual outcomes
could be written Y z1,...,zp

p . However, according to Assumption 1, the QTc measurements in period p only
depend on the treatment in period p, and therefore notation can be simplified further. I.e., Y z1,...,zp,...,zP

p =
Y

q1,...,zp,...,qP
p = Y

zp
p for all treatment regimes and periods. Thus, from here on, Y zp

p will denote the
potential QTc measurements in period p if the subject, possibly counter to fact, had received treatment zp
in period p.

If we were particularly interested in treatment z and had ample resources in terms of money, time, and
subjects, we would have made a two-arm trial and used

E(Y z
t − Y 0

t ), t = 1, . . . , T,

as the causal contrasts of interest. Note that the first period in a cross-over trial corresponds to such a trial
and as a consequence the targeted causal contrasts can be identified as:

E(Y z
1t − Y 0

1t), t = 1, . . . , T.

We can then easily estimate the contrasts based on data from the first period only, for example by
∑n

i=1 I(Zi1 = z)Yi1t∑n
i=1 I(Zi1 = z)

−
∑n

i=1 I(Zi1 = 0)Yi1t∑n
i=1 I(Zi1 = 0)

, t = 1, . . . , T.

Clearly this is not an efficient use of all the data collected in the cross-over trial. However, to enable full use
of the data, stricter assumptions than Assumption 1 are needed. Specifically, we need to make assumptions
about the distributions of the post-baseline measurements. To this end, it would be natural to assume the
same treatment effect in all periods:

Assumption 2 (Same treatment effect)

E(Y z
p − Y 0

p ) = E(Y z
q − Y 0

q )

for all p and q. I.e. the treatment effect is the same in all periods.
Assumption 2 enables estimation of one overall treatment effect across all periods. A special case where

Assumption 2 holds is when the distribution of period specific data does not depend on period:
Assumption 3 (Same distribution)

(Y 0
p , . . . , Y

P−1
p , Xp, Zp)

D
= (Y 0

q , . . . , Y
P−1
q , Xq, Zq),

for all p and q.
Assumption 3 is rather restrictive compared to Assumption 2 in that it a priori excludes any systematic

effect due to period. This contradicts current modelling and design practice in cross-over trials, where
potential period effects are modelled and subjects are randomized according to a latin square in order to
balance any period effect (Senn, 2002).

As an alternative, one can assume that the conditional distribution of the post-baseline measurements,
given covariates, is the same in all periods:
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Assumption 4 (Same relationship)

(Yp|Xp = x, Zp = z)
D
= (Yq|Xq = x, Zq = z)

for all p and q.

This facilitates a model fit based on data from all periods, which may in turn be used to infer the period
specific causal contrast E(Y z

p − Y 0
p ).

Assumption 4 may initially appear paradoxical in light of the DAG depicted in Figure 1, along with
Assumption 1. Specifically, it may seem surprising that it doesn’t involve the unmeasured confounders.
Essentially, Assumption 4 posits a hypothesis about the structure of these unmeasured confounders and
their impact on the outcome. This assumption can be satisfied if, for instance, the unmeasured confounders’
distribution remains the same throughout all periods, and the covariates affect the outcome in the same
way in all periods. Hence, Assumption 4 entails weaker causal assumptions, but necessitates stronger
assumptions on the data distribution to guarantee the identifiability of a causal effect. In general we will
make Assumption 2 in the remaining part of the manuscript, although we mention in the discussion what
happens if it is not satisfied, and how Assumption 4 can be used to get an estimate of a causal effect.

3 Estimation

The causal framework from the last section enables us to clearly define our target of estimation. In this
section, we provide inference procedures tailored to assess the causal target parameter in the context of
a TQT study. For brevity, we only consider the case, where we have assumed the same average causal
treatment effect in all periods. I.e., we specifically develop estimators for E(Y z

1 − Y 0
1 ) under Assumption

2. An outline of how to estimate period specific average causal effects without Assumption 2 is provided
in Section 6.

Under Assumption 2 the fact that subjects receive both the placebo and active treatment initially moti-
vates the following simple non-parametric estimator:

µ̂1t(z) =
1

n

n∑

i=1

P∑

p=1

I(Zip = z)Yipt − I(Zip = 0)Yipt,

where the indicator function, I(A), maps elements of A to one and is zero otherwise. Note that this, and
all other estimators throughout this paper, has t in the subscript to indicate that it is the estimator for the
post-baseline measurement time point t. Naturally, an effect will be estimated for each t = 1, . . . , T .
Note that µ̂1t(z) simply takes the outcomes in the periods, where the subjects receive the treatment of
interest, and subtracts the outcomes in the placebo periods, and averages across subjects. It is an unbiased
estimator for the treatment effects of interest due to the randomization. However, it only uses post-baseline
measurements, and may therefore lack precision. Alternatively, one can pursue fitting a working regression
model to the data and thereby bring baseline measurements into play. We specifically assume that the
possible outcome predictions in this working model are given by hpt(x, z, β), where β is a vector of
regression parameters. Under Assumption 3 it is possible to ignore periods and use the simpler working
regression model ht(x, z, β). Such a working model can be used to estimate the causal effects of interest
simply by plugging into the g-computation formula (Robins, 1986):

µ̂2t(z) =
1

n · P
n∑

i=1

P∑

p=1

[hpt(Xip, z, β̂)− hpt(Xip, 0, β̂)].

This estimator uses covariate information to gain efficiency. Moreover, in situations with missing endpoint
data, the estimator is still unbiased under the missing at random assumption given that the regression

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



6 Jeppe Ekstrand Halkjær Madsen et al.: Unbiased and Efficient Estimation in Cross-over Trials

model is correctly specified. In comparison, the endpoint data has to be missing completely at random for
the simple estimator µ̂1t(z) to be unbiased.

Up front, the above developments depend on the fact that the working regression model is specified so
that it captures the true mean value structure. Since this by no means is warranted, it is important to mitigate
the impact in terms of bias if the working model is misspecified. Such a mitigation can be successfully
achieved with the following semi-parametric estimator:

µ̂3t(z) = µ̂1t(z)−
1

n

n∑

i=1

P∑

p=1

[(
I(Zip = z)− 1

P

)
hpt(Xip, z, β̂)−

(
I(Zip = 0)− 1

P

)
hpt(Xip, 0, β̂)

]
.

The estimator is derived in Web Appendix A. It uses covariates to gain precision, but is unbiased due to the
independence between Xp and Zp. This independence is ensured by the randomization and implies that
the last term has a mean of zero. Thus, the estimator has the same mean as the non-parametric estimator,
namely the true causal effect. The following theorem shows that µ̂3t(z) = µ̂2t(z) for certain types of
working models.

Theorem 1 (Unbiasedness of µ̂2t(z)) Assume the data structure of this paper, and assume we use a
working model with post baseline measurements as outcome, and with main effects of treatment specific
to each post baseline time point. Let Yi be the vector of all post baseline measurements for subject i, and
let h(Xi, Zi, β) be the vector of all predictions for subject i from the working model. Assume the working
model parameters, β, are estimated from the following weighted least squares estimating equation:

n∑

i=1

DiV
−1(Yi − hi(Xi, Zi, β)) = 0, (1)

where Di is the design matrix for subject i, and V is a weight matrix on the form



A B · · · B
B A · · · B
...

...
. . .

...
B B · · · A


 , (2)

where A and B are T × T matrices. If A−B is non-singular, then

µ̂2t(z) = µ̂3t(z).

P r o o f. The proof is provided in Web Appendix B.

We know that µ̂3t(z) is unbiased by construction. Hence, Theorem 1 implies unbiased estimation when
using µ̂2t(z) with a working model satisfying the conditions in Theorem 1, no matter how misspecified
the working model happens to be. There have been a lot of discussions about the right choice of model
for TQT studies, but Theorem 1 implies the existence of a whole range of models we can use without
fear of biased estimation of treatment effects in crossover trials. We stress that h(Xi, Zi, β) is a vector of
all the predictions made for all the outcomes of subjects i. In particular Xi here, admittedly with some
violation of notation, is just the covariates that are adjusted for. This could be the baseline measurements
from the same periods, baseline measurements from all periods, as argued for by Kenward and Roger
(2010), other covariates such as sex and age, or it could even be no covariates except for the treatment
by time point effect required by the Theorem. This last point is partly reflected by the fact that µ̂1t(z) is
unbiased despite not adjusting for covariates, since this estimator can be achieved as a very special case of
Theorem 1. However, adjustment for baseline measurements is a good idea in order to improve efficiency
of the estimator despite bias not being a concern. However, it would be beneficial to know whether any
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popular choices of models happen to satisfy the conditions in Theorem 1. The following Corollary shows
that a big class of the most popular types of models for crossover trials satisfy the conditions of Theorem
1, and thereby ensure unbiased estimation of causal effects under arbitrary misspecification of the applied
working model.

Corollary 1 (Gaussian linear mixed models) Assume the working model is a Gaussian linear mixed
model with main effects of treatment specific to each post baseline time point, and a correlation struc-
ture satisfying (2). Then, µ̂2t(z) = µ̂3t(z) if model parameters are estimated by maximum likelihood or
restricted maximum likelihood estimation.

P r o o f. The estimating equation for Gaussian linear mixed models is given on page 10 in Jiang (2007)
and can be rewritten to (1). This is the case both for MLE and REML, although variance parameters, and
thereby the V matrix from Theorem 1 differs (see page 14 in Jiang (2007)).

When the working model is a Gaussian linear mixed model, the requirement (2) corresponds to mod-
elling the dependence within periods by some matrix A, and the dependence between periods by a matrix
B. For example, B might be a matrix of constants corresponding to a random subject effect, and A can
be modelled more flexibly, for example with an unstructured covariance structure, or an AR(1) covariance
structure. When we only have one outcome per period, the assumption correspond to using compound
symmetry for the correlation structure. In the special case of a Gaussian linear mixed model, consider
A = σ2I and B a matrix of zeros. In this case, the working model is a standard linear regression model
that ignores any dependence between observations. Corollary 1 then ensures that we are able to produce
sound inference even with this simplistic model. We do, however, expect this working model to be less ef-
ficient than if we model the dependence structure in a Gaussian linear mixed model. A particular example
of a much used working regression model is given by Patterson and Jones (2006):

hpt(x, z, β) = βpt + βxx+ βzt. (3)

Clearly the conditions of Theorem 1 are satisfied for the systematic part of this model, as it includes a
main effect of treatment specific to each post baseline time point. Additionally, the covariance structure
proposed in Patterson and Jones (2006) is AR(1) within periods, and assuming constant covariance between
observations on the same subject in different periods. Accordingly, the proposed covariance structure
complies with (2). The estimates of the time specific effects of treatment βzt equal the estimates obtained
if we were to plug model (3) into µ̂2t(z). Thus, the estimates of βzt are unbiased for the treatment effects
of interest under arbitrary model misspecification.

In order to enable inference fully, we further need to characterize the large sample behaviour. This
is well established if the targeted treatment effects appear as parameters in the model, and assuming that
the model is correctly specified. However, in more complex models, the target treatment effect is not
readily identified as a parameter specified in the model. Moreover, model based standard errors may not
be appropriate, unless the model is correctly specified. The influence function of µ̂2t(z) is derived in Web
Appendix C under the assumption that the β parameters are estimated using an M-estimator. For models
not covered by Theorem 1, µ̂3t(z) is still unbiased whereas µ̂2t(z) may be biased. Therefore, it would be
preferable to use µ̂3t(z) in such cases. Accordingly, we also derive the influence function for µ̂3t(z) in
Web Appendix A.

One particular use of the above asymptotic results is when assessing QT prolongation in a TQT trial. In
this context, the test for QTc prolongation for the drug of interest is carried out by use of an intersection-
union test. I.e. the null-hypothesis is

H0 :
T⋃

t=1

µt(z) ≥ ∆,
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where

µt(z) = E(Y z
pt − Y 0

pt),

and ∆ is some reasonable amount of QT prolongation, such as 10 ms (Patterson and Jones, 2006). Com-
monly speaking, the null-hypothesis dictates that there exists a time point where QT prolongation exceeds
a prespecified clinically negligible threshold. Tests are carried out for each t based on the asymptotic
behaviour of the standardized estimates of µt(z), and the null is rejected if all of these tests are rejected.

In addition, it is common practice to assess if prolongation can be detected for the positive control. The
corresponding null-hypothesis is

H0 :

T⋂

t=1

µt(z) ≤ ∆.

The test of this hypothesis needs to be adjusted for multiple testing. This adjustment should be made in the
most efficient way possible, which is possible because we can estimate the joint (asymptotic) distribution
of our estimators (Pipper et al., 2012; Hothorn et al., 2008). We can derive the joint asymptotic distribution
of our estimators from the influence functions as

√
n(µ̂2(z)−µ(z)) =



µ̂21 − µ1(z)

...
µ̂2T − µT (z)


 =

1√
n

n∑

i=1



φ1(di)

...
φT (di)


+op(1) =

1√
n

n∑

i=1

φ(di)+op(1),

where φt(di), t = 1, . . . , T are the influence functions of the individual estimators. It follows that the
asymptotic variance matrix of the joint distribution of our estimators equals

E(φTφ)

n
. (4)

The estimation of targeted treatment effects as outlined above is based on well known regression models
and as we have seen the targeted treatment effects may sometimes even be identified directly as regres-
sion parameters in those models. Theorem 1 then guarantees that the identified regression parameters are
estimated without bias, irrespective of whether the regression model is correctly specified or not. This
guarantee, however, does not extend to the model based variance matrix of the estimates. For this to be
appropriate, one also needs to assume that the regression model is correct. The asymptotic variance ma-
trix (4) on the other hand is generally applicable. When the targeted treatment effects are identified as
regression parameters, it may even be obtained by standard software (Pustejovsky, 2022).

The asymptotic theory developed is applicable as is, when the sample size is large. However, TQT trials
and many cross-over trials have a rather small sample size, in which case the appropriateness of the asymp-
totic theory is questionable. For such cases, there is a substantial literature on how to improve asymptotic
standard errors and confidence intervals (Bell and McCaffrey, 2002; Colin Cameron and Miller, 2015;
MacKinnon and White, 1985; Pustejovsky and Tipton, 2018). One simple improvement of the asymptotic
standard errors from Colin Cameron and Miller (2015) is to use the influence function in the same way as
we would in the context of a linear normal model. I.e. to estimate the variance by 1

n−1

∑n
i=1 φ̂

2
i instead

of 1
n

∑n
i=1 φ̂

2
i , and use the 97.5% quantile of the t-distribution with n − 1 degrees of freedom instead of

a standard normal distribution to construct confidence intervals. These modifications vanish as the sample
size increases, and will consequently lead to correct asymptotic inference. These simple small sample
modifications are used in the analyses and simulations throughout this paper.

4 Data Example

To illustrate the developments in this paper, we reanalyse a standard TQT trial also analysed in chapter
9 of Patterson and Jones (2006). The data set is freely available on the book website, and consists of 41

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 52 (2010) 61 9

subjects, two of which we have excluded due to missingness. There are three single-dose treatments (C,
D, E) and a placebo (F). Treatment E is included as a positive control, i.e. treatment E is known to mildly
prolong the QT interval. The subjects’ QT intervals are measured in triplicates at baseline, 0.5 hours, 1
hour, 1.5 hours, 2.5 hours, and 4 hours post treatment. The triplicates are averaged at each time point.

In accordance with the developments presented in Section 3, we analyse the data with a range of models
of differing complexity that, in theory, facilitate unbiased estimates of the average causal effects under
Assumption 2. We informally compare these models in terms of obtained estimates and standard errors.

Our benchmark model corresponds to the recommendation made in Lu (2014). This paper advocates a
regression model including average baseline measurements as a covariate. It is shown in Lu (2014) that this
approach is consistent with the joint baseline and post baseline measurement model advocated in Kenward
and Roger (2010) and Meng et al. (2010). It is further argued in Lu (2014) that the resulting estimates of
the treatment effects will be superior in terms of precision.

Specifically, the working regression model proposed in Lu (2014) is given by:

hpt(x, z, β) = βpt + βxtx+ βx̄tx̄+ βzt, (5)

where X̄ is the average baseline measurement. The effect of the baseline measurements and average
baseline measurements are different at different time points.

Moreover, we fit a simpler model with mean structure:

hpt(x, z, β) = βpt + βxtx+ βzt,

i.e. a model without average baseline measurements, but still with interaction between the effect of baseline
and time point.

Furthermore, we fit an even simpler model with mean structure

hpt(x, z, β) = βt + βxx+ βzt,

i.e. without average baseline measurement, no interaction between time point and period, and the effect of
the baseline measurement is the same at all time points. All the models above have the treatment effects as
specific parameters. In order to illustrate the modelling flexibility facilitated by Theorem 1, we fit a model
with interaction between baseline and treatment:

hpt(x, z, β) = βt + βxzx+ βzt.

Note that with the complexity of this model, it is no longer possible to identify the average causal effect as
a parameter in the regression model. Therefore, we can no longer rely on standard inference of regression
models, but need to rely on the general inference procedures developed in Section 3.

On top of specifying a mean structure for the models, we also need to specify the working covariance
structure. The working covariance structure has to be on the form (2), and in the following we will use
a random subject effect corresponding to B being a matrix of constants unless otherwise specified. We
consider three different specifications for the A matrix:

1. Unspecified: all the variances and covariances have to be estimated.

2. AR(1): variance matrix is on the form:

A = σ2




1 ρ . . . ρT−1

ρ 1 . . . ρT−2

...
...

. . .
...

ρT−1 ρT−2 . . . 1


 ,

where ρ and σ2 are parameters to be estimated.
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3. Independence: A = σ2I , where I is the identity matrix. In this case, B will be a matrix of zeros
corresponding to a standard linear regression model.

Last, we also fit the non-parametric estimator µ̂1t(z). The estimates of the effect of treatment E compared
to placebo at post baseline time 4 from the models are displayed in Table 1. Note that the standard errors
and confidence intervals are based on the small sample size adjustment discussed in the last section. The
remaining estimates of treatment effects are presented in Web Appendix D. In practice, the main reason
for choosing one model over another is in order to have as much efficiency as possible, and not because
we expect to actually know the true data-generating mechanism. From Table 1 we note that estimates
of the targeted treatment effect across all models seem comparable. The standard errors are substantially
larger with the non-parametric approach, whereas for all other model based approaches, standard errors are
comparable. We investigate these observations further in a simulation study mimicking the data example
in the next section.

5 Simulation Study

Simulation studies have already demonstrated that it is theoretically possible to gain precision by including
the average baseline measurement as a covariate (Lu, 2014; Meng et al., 2010). However, it is unclear how
much the addition of the average baseline covariates matters for the precision in realistic setups. Therefore,
we have based our simulation on the data set from the previous section.

Specifically, we have simulated the data as follows: a joint normal distribution of the baseline mea-
surements is fitted to the baseline measurements in the data set, and baseline measurements are simulated
according to this fit. The model with mean structure (5) and unspecified covariance structure between ob-
servations from the same period is fitted to the data set, and the post baseline measurements are simulated
from that model.

There are at least two advantages to this approach: first, the simulation must be considered realistic
since it is based on parameters estimated on a data set from a real TQT trial. Second, we know that models
ignoring the average baseline measurements are too simple to capture the true data-generating mechanism.
Thereby, the simulations can show us how much precision we can expect to lose by not using average
baseline measurements as covariates in real TQT studies.

We compare all the models from the last section. The models are misspecified both in terms of mean
structure and in terms of correlation structure, but are all unbiased by Corollary 1. We ran 10000 simula-
tions in the statistical program R (R Core Team, 2021), and the code is available at
https://github.com/Jeepen/TQTpaper. The results of the simulations are displayed in Table
2. Standard errors and confidence interval coverages are again based on an adjustment for small sample
size. As expected, all estimators have negligible bias. The standard error estimates seem approximately
correct compared to the sample standard deviation of the estimates, and the coverages of the confidence
intervals are consequently close to 95 %. The standard deviations in the table show that by far the majority
of the gain in precision from using a model comes from the inclusion of the baseline measurements. Us-
ing the average baseline measurement as a covariate adds little precision, even over the linear regression
model. However, the gain in precision from including the average baseline as a covariate and using a more
flexible covariance structure than independence is for free, since Corollary 1 implies unbiased estimation
in any case.

6 Discussion

We have introduced causal reasoning to the field of TQT studies. We have shown how typical choices of
estimators can be given very clear causal interpretations in terms of the data, and not just in terms of specific
models. Furthermore, we have shown that popular choices of working models in many circumstances yield
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unbiased estimates of causal parameters under arbitrary model misspecification. We have illustrated these
results in a data example and a simulation study.

However, the unbiasedness of the proposed estimators follows from the balancing induced by random-
ization. In practice, we may have missing data, which can invalidate the balancing initially ensured by
the randomization. That said, the amount of missing data is typically negligible in TQT studies, owing
to the fact that they are most often conducted on healthy subjects who are paid to participate (Food and
Drug Administration, 2005). In cases with a non-negligible amount of missing data the working regression
models can be fitted to the observed data with MLE assuming missingness at random (MAR), and distinct
parameters for the missing data mechanism and for the outcome. As a consequence, it is straightforward
to estimate the causal effects when using a linear mixed model, where the causal effects are identified as
the main effects of treatment. However, this becomes challenging if we consider more complex models. In
that case, a viable strategy could be to use imputation or weighting methods in order to go from model to
estimates of the causal effects (Little and Rubin, 2020; Tsiatis, 2006).

We have focused on how to estimate causal effects under assumption (2), that is, assuming the effects
are the same in all periods. To complement these developments, it is interesting to consider what we are
estimating if that assumption does not hold. In general, the mean of µ̂1t(z) equals

1

P

P∑

p=1

E(Y z
pt − Y 0

pt),

i.e. the average of the causal effects for each period. µ̂3t(z) has the same mean due to the randomization,
and µ̂2t(z) will equal µ̂3t(z) when estimation is done according to Theorem 1. Thus, in general, the above
strategy will lead to unbiased estimation of the average of the period specific causal effects. Alternatively,
one may fit a working model to all data under Assumption 4, and subsequently apply g-computation for a
single period:

1

n

n∑

i=1

h(XiP t, z, β̂)− h(XiP t, 0, β̂). (6)

The estimation of h gains precision by using data from all periods, which in turn makes (6) more pre-
cise. The estimator (6) emulates a standard one-period trial, while it is unclear what we are emulating by
ignoring the period specific treatment effects (Hernán et al., 2008). This is a topic for further research.

Two other theoretical issues also deserve more attention. First, we have not theoretically shown that
µ̂2t(z) or for that matter µ̂3t(z) are in fact more efficient than the non-parametric estimator µ̂1t(z). We,
however, suspect this to be the case in line with the results obtained for one-period trials in Bartlett (2018)
and van der Laan and Rose (2011). Second, the impact of a violation of restrictions on the working model
dictated by Theorem 1 deserves further investigation. Possibly, a more flexible weight matrix than what is
warranted by Theorem 1 may lead to further efficiency gains.

Finally, we would like to point out the difference between the estimation procedure proposed in this
paper and the traditional approach of reporting treatment effects based on differences in least squares
means (see for example chapter 8 of Patterson and Jones (2006)). It is duly noted that differences in least
squares means are equivalent to µ̂2t(z) when the treatment effects are modelled as main effects in a linear
mixed model. However, they are not equivalent to µ̂2t(z) when the model is more complex. In those cases,
least squares means lack a proper causal interpretation in a meaningful population and on those grounds
µ̂2t(z) or µ̂3t(z) should be preferred for assessing causal treatment effects.
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Figure 2 Cross-over trial design.
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Figure 3 W , W1, W2 = subject specific latent variables, R = Randomization.

Table 1 Estimates and standard errors for data example.

Mean structure Covariance structure Estimate Standard Error 95% CI

βpt + βxtx+ βx̄tx̄+ βzt Unspecified 8.32 1.53 (5.22, 11.42)
AR(1) 8.11 1.49 (5.09, 11.14)
Independence 8.19 1.54 (5.07, 11.32)

βpt + βxtx+ βzt Unspecified 8.22 1.52 (5.14, 11.31)
AR(1) 8.09 1.48 (5.11, 11.08)
Independence 8.19 1.52 (5.12, 11.26)

βt + βxx+ βzt Unspecified 8.49 1.43 (5.59, 11.40)
AR(1) 8.30 1.44 (5.38, 11.22)
Independence 8.43 1.44 (5.51, 11.34)

βt + βxzx+ βzt Unspecified 8.43 1.40 (5.60, 11.26)
AR(1) 8.29 1.43 (5.49, 11.10)
Independence 8.42 1.42 (5.55, 11.30)

µ̂1t(z) 8.18 2.05 (4.03, 12.33)
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Table 2 Bias, standard deviation of estimates, and coverage of confidence intervals in simulations.

Mean structure Covariance structure Bias SD Avg. SE Coverage

βpt + βxtx+ βx̄tx̄+ βzt Unspecified 0.02 1.48 1.43 0.947
AR(1) 0.02 1.48 1.43 0.947
Independence 0.02 1.48 1.48 0.954

βpt + βxtx+ βzt Unspecified 0.01 1.49 1.45 0.945
AR(1) 0.01 1.49 1.45 0.945
Independence 0.01 1.52 1.52 0.952

βt + βxx+ βzt Unspecified 0.02 1.48 1.46 0.951
AR(1) 0.02 1.48 1.46 0.951
Independence 0.02 1.51 1.51 0.954

βt + βxzx+ βzt Unspecified 0.02 1.48 1.38 0.939
AR(1) 0.02 1.47 1.38 0.939
Independence 0.02 1.50 1.49 0.951

µ̂1t(z) 0.02 1.94 1.94 0.952
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1 Web Appendix A: Derivation of µ̂3t(z)

The estimator is derived in the same way as the semi-parametric estimator for the pretest-posttest study
in Tsiatis (2006), but with µ̂1t(z) as the non-parametric starting point. Note that this won’t result in the
efficient estimator in our setup, since we also have the assumption of the same treatment effect in all
periods, which is not used in the derivation.

The influence function of µ̂1t(z) is given by

φ1(D) =
P∑

p=1

[I(Zp = z)Ypt − I(Zp = 0)Ypt]− µt(z),

where µt(z) = E(Y z
pt−Y 0

pt) is the true causal effect, which we remind the reader is independent of period
under Assumption 2, and D consists of all the data from the subject. We derive the estimator µ̂3t(z) by the
same calculations as Tsiatis (2006), namely

φ3(D) = φ1(D)− (E(φ1(D)|X̄, Z̄)− E(φ1(D)|X̄)), (1)

where X̄ = {X1, . . . , XP }, and likewise for Z̄. We calculate the expectations:

E(φ1(D)|X̄, Z̄) =E
(

P∑

p=1

I(Zp = z)Ypt − I(Zp = 0)Ypt − µt(z)|X̄, Z̄
)

=

P∑

p=1

[
I(Zp = z)E(Ypt|X̄, Z̄)− I(Zp = 0)E(Ypt|X̄, Z̄)

]
− µt(z)

=
P∑

p=1

I(Zp = z) [E(Ypt|Xp, Zp = z)− I(Zp = 0)E(Ypt|Xp, Zp = 0)]− µt(z),

∗Corresponding author: e-mail: jehm@sund.ku.dk, Phone: +45-31499927
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and

E(φ1(D)|X̄) =

P∑

p=1

[P(Zp = z)E(Ypt|Xp, Zp = z)− P(Zp = 0)E(Ypt|Xp, Zp = 0)]− µt(z)

=
P∑

p=1

[
1

P
E(Ypt|Xp, Zp = z)− 1

P
E(Ypt|Xp, Zp = 0)

]
− µt(z),

The expectations E(Ypt|Xp, Zp = z) and E(Ypt|Xp, Zp = z) require a model, h.
When plugging the above into (1) we get an estimator of the influence function, φ3(D), and the estima-

tor µ̂3t(z) is obtained by simple isolation from the equation

√
n(µ̂3t(z)− µt(z)) =

1√
n

n∑

i=1

φ3(Di) + oP (1),

which defines influence functions.

1.1 Influence Function for µ̂3t(z)

It might seem like the influence function was derived above. However, one could imagine that the estima-
tion of the models in the first step would change the influence function, so we get a term like Gβψ(d) in
the case of µ̂2t(z).

We can simply take the estimator µ̂3t(z), subtract µt(z) and multiply by
√
n in order to get

√
n(µ̂3t(z)− µt(z)) =

1√
n

n∑

i=1

−µt(z) +
P∑

p=1

I(Zp = z)Ypt − I(Zp = 0)Ypt

−
[(
I(Zip = z)− 1

P

)
hpt(Xip, z, β̂n)−

(
I(Zip = 0)− 1

P

)
hpt(Xip, 0, β̂n)

]
.

(2)

This looks like an equation that gives us the influence function, but note that β̂n is estimated on all data,
so the terms above are strictly speaking not independent. To proceed, we need to assume something about
what happens to β̂n as n gets bigger. Assume that there exists β∗ such that

√
n(β̂n − β∗) are bounded in

probability and that h as a function of β is differentiable in a neighbourhood of β∗. Then it is possible to
Taylor expand h in (2) to get

√
n(µ̂3t(z)− µt(z)) =

1√
n

n∑

i=1

−µt(z) +
P∑

p=1

I(Zp = z)Ypt − I(Zp = 0)Ypt

−
[(
I(Zip = z)− 1

P

)(
hpt(Xip, z, β

∗) + 0.5
∂hpt(Xip, z, β

∗)
∂β

(β̂n − β∗)

)

−
(
I(Zip = 0)− 1

P

)(
hpt(Xip, 0, β

∗) + 0.5
∂hpt(Xip, 0, β

∗)
∂β

(β̂n − β∗)

)]
+ op(1)

=
1√
n

n∑

i=1

−µt(z) +

P∑

p=1

I(Zp = z)Ypt − I(Zp = 0)Ypt

−
[(
I(Zip = z)− 1

P

)
hpt(Xip, z, β

∗)−
(
I(Zip = 0)− 1

P

)
hpt(Xip, 0, β

∗)

]
+ op(1),
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which gives us the influence function for µ̂3t(z). It looks a lot like what we would expect from (2) with the
detail that we have hpt(Xip, z, β

∗) and hpt(Xip, 0, β
∗) instead of hpt(Xip, z, β̂n) and hpt(Xip, 0, β̂n). The

influence function for µ̂3t(z) has the added advantage that it is easier to implement a variance estimator
using that influence function than the influence function for µ̂2t(z). Therefore, it is preferable to use the
influence function for µ̂3t(z) to estimate the variance when the two estimators coincide.

2 Web Appendix B: Proof of Theorem 1

We base the proof on rewriting the estimator µ̂3t(z) as

µ̂3t(z) =
1

n

n∑

i=1

P∑

p=1

I(Zip = z)Yipt − I(Zip = 0)Yipt

− 1

n

n∑

i=1

P∑

p=1

[(
I(Zip = z)− 1

P

)
hpt(Xip, z, β̂)−

(
I(Zip = 0)− 1

P

)
hpt(Xip, 0, β̂)

]

=
1

n · P
n∑

i=1

P∑

p=1

[hpt(Xip, z, β̂)− hpt(Xip, 0, β̂)]

+
1

n

n∑

i=1

P∑

p=1

I(Zip = z)(Yipt − hpt(Xip, z, β̂))− I(Zip = 0)(Yipt − hpt(Xip, 0, β̂)).

The last rewriting shows that µ̂3t(z) is equal to µ̂2t(z) plus an adjustment term, i.e., µ̂2t(z) = µ̂3t(z) if the
last term is zero.

We assume the β-parameters are estimated from the following weighted least squares estimating equa-
tion.

n∑

i=1

DiV
−1(Yi − h(Xi, Zi, β)) = 0, (3)

where V is on the form:



A B · · · B
B A · · · B
...

...
. . .

...
B B · · · A


 , (4)

where A and B are T × T matrices. The inverse of these matrices is also on the form



A B · · · B
B A · · · B
...

...
. . .

...
B B · · · A




−1

=




C D · · · D
D C · · · D
...

...
. . .

...
D D · · · C


 , (5)

where C and D are T×T matrices. This can be realized by using the Woodbury identity (Theorem 18.2.8 in
Harville (2008)). The Woodbury identity states that assumingX is nonsingular, thenX+Y is nonsingular
if and only if I +X−1Y is nonsingular, and in that case:

(X + Y )−1 = X−1 −X−1Y (I +X−1Y )−1X−1.

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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For our purposes we will choose:

X =




A−B 0 · · · 0
0 A−B · · · 0
...

...
. . .

...
0 0 · · · A−B


 ,

and

Y =




B B · · · B
B B · · · B
...

...
. . .

...
B B · · · B


 ,

such that V = X + Y . To realize that (5) follows from the Woodbury identity, one needs to realize that
X−1 is block diagonal with (A−B)−1 in the diagonal. Moreover,

X−1Y =




(A−B)−1B (A−B)−1B · · · (A−B)−1B
(A−B)−1B (A−B)−1B · · · (A−B)−1B

...
...

. . .
...

(A−B)−1B (A−B)−1B · · · (A−B)−1B


 .

The inverse of (I +X−1Y ) is then EF , where

E =




(P − 1)(A−B)−1B + I −(A−B)−1B · · · −(A−B)−1B
−(A−B)−1B (P − 1)(A−B)−1B + I · · · −(A−B)−1B

...
...

. . .
...

−(A−B)−1B −(A−B)−1B · · · (P − 1)(A−B)−1B + I


 ,

F =




(P (A−B)−1B + I)−1 0 · · · 0
0 (P (A−B)−1B + I)−1 · · · 0
...

...
. . .

...
0 0 · · · (P (A−B)−1B + I)−1


 .

This can be checked by multiplying the matrices and see that they give you the identity (it might be easier
if you substitute (A − B)−1B with K). Then X−1Y (I + X−1Y )−1X−1 is a block matrix where all
blocks are equal. Then the Woodbury identity gives us a block diagonal matrix minus a block matrix with
all blocks equal, which is on the form (5).

For convenience, we will introduce

εipt = Yipt − hpt(Xip, Zip, β).

There is an equation in (3) for each column in our design matrix, i.e. one equation for each β-parameter.
However, as it turns out, we only need some equations to get µ̂2t(z) = µ̂3t(z). We re-parameterise our
model so that instead of having a β-parameter per combination of treatment and time point, we have
main effects from time points, and main effects of non-placebo treatment per time point, i.e. placebo
treatment becomes a reference level. First, we need the equations coming from having an effect of time
point in our model. If we specifically look at the estimating equation coming from the effect of time point

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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t0 ∈ {1, . . . , T}, then it looks like this:

0 =

n∑

i=1

P∑

p=1

T∑

t=1

εipt · (ctt0 + (P − 1)dtt0)

=
T∑

t=1

(ctt0 + (P − 1)dtt0)
n∑

i=1

P∑

p=1

εipt, t0 = 1, . . . , T. (6)

The inverse variance matrix leads to all residuals from all time points, periods, and subjects, being included
in the estimating equation (6) for time point t0. However, (6) is T linear equations, one for each t0, with T
unknowns, all equalling zero. Hence, we can conclude

n∑

i=1

P∑

p=1

εipt = 0, t = 1, . . . , T. (7)

The second set of estimating equations we need comes from having main effects of treatment per time
point in our model. The estimating equation corresponding to the effect of treatment z at time point t0 is:

0 =
n∑

i=1

P∑

p=1

T∑

t=1

εipt · (ctt0 · I(Zip = z) + dtt0
∑

q ̸=p

I(Ziq = z))

(∗)
=

n∑

i=1

P∑

p=1

T∑

t=1

εipt · I(Zip = z) · (ctt0 − dtt0) + εipt · dtt0

=
T∑

t=1

(ctt0 − dtt0)
n∑

i=1

P∑

p=1

εipt · I(Zip = z) +
T∑

t=1

dtt0

n∑

i=1

P∑

p=1

εipt

(∗∗)
=

T∑

t=1

(ctt0 − dtt0)

n∑

i=1

P∑

p=1

εipt · I(Zip = z), t0 = 1, . . . , T.

(*) comes from the fact that all subjects receive each treatment exactly once, so that
∑

q ̸=p I(Ziq = z) =

1 − I(Zip = z). (**) comes from (7). The rest is just interchanging the order of summation. Again, we
have T equations with T unknowns and can conclude

n∑

i=1

P∑

p=1

εipt · I(Zip = z) = 0, t = 1, . . . , T, z = 1, . . . , P − 1, (8)

as wanted. Note that the above argument only works for all other treatments than the placebo, since placebo
is the reference treatment. However, we can rewrite (7) to

0 =
n∑

i=1

P∑

p=1

εipt

=

n∑

i=1

P∑

p=1

P−1∑

z=0

I(Zip = z)εipt

=
n∑

i=1

P∑

p=1

I(Zip = 0)εipt,

where the last equality comes from (8). Thus, the extra term in µ̂3t(z) is zero, and µ̂3t(z) = µ̂2t(z).
Adding other covariates or terms to the regression will not change this fact as long as we have main effects
of treatment specific to each post baseline time point.
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3 Web Appendix C: Influence Function for µ̂2t(z)

Assume the estimation in the first stage solves the following equation:

n∑

i=1

m(Di, β) = 0, (9)

where Di is all the information we have about subject i. This would for example be the case if we used
MLE in which case m would be the score function. Denote the solution to (9) by β̂n, and the limit in
probability of β̂n by β0. Then the influence function of µ̂2t(z) is found using Theorem 6.1 from Newey
and McFadden (1994):

φt(D) =
1

P

P∑

p=1

[h(Xp, z, β0)− h(Xp, 0, β0)− µt(z)] +Gβψ(D), (10)

where

Gβ = E

(
∇β

1

P

P∑

p=1

[h(Xp, z, β0)− h(Xip, 0, β0)]

)
,

ψ(D) = −(E(∇βm(D,β0))
−1m(D,β0).

The first term in (10) represents the uncertainty coming from the covariate distribution, and is zero if the
model simply is a main term linear mixed model, where µ̂2t(z) is a parameter in the model, and thereby
independent of covariates. The second term represents the uncertainty arising from the estimation of the
β-parameters in the first stage. The variance of the estimator is then

E(φt(D)2)

n
.

4 Web Appendix D: Extra Tables

In the following tables, columns correspond to the models also used for the data example in the same order.
Names are removed in the interest of space.

Tables 1 and 2 show the estimated effects and standard errors for the data example. These are hard
to judge up front, but should all be unbiased, although the standard error estimates probably are slightly
biased due to the small sample size. Table 3 shows that all the models are unbiased for all the causal effects
considered, as they indeed should be according to Corollary 1. Tables 4 and 5 show that the standard error
estimates from the influence function in general do well, although a bit biased towards zero due to the
small sample size. Table 6 shows that the different models have good coverage probabilities for the true
parameter, as they indeed should according to Corollary 1.
Conflict of Interest
The authors have declared no conflict of interest.
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Abstract

We propose a novel method to adjust for unmeasured time-stable confounding, when

the time between consecutive treatment administrations is fixed. In this setup, we

may eliminate all unmeasured time-stable confounding by adjusting for the potential

time on treatment or equivalently the potentially unrealized number of treatment

administrations. A challenge with this approach is that right censoring of the potential

time on treatment occurs when treatment is terminated at the time of the event of

interest, for example if the event of interest is death. We show how this challenge

may be solved by means of the EM algorithm. The usefulness of the methodology

is illustrated in a simulation study. We also apply the methodology to investigate the

effect of depression/anxiety drugs on subsequent poisoning by other medications

in the Danish population by means of national registries. Here, we find a protective

effect of treatment with selective serotonin reuptake inhibitors on the risk of poisoning

by various medications (one year risk difference of approximately −3%). A standard

Cox model analysis shows a harming effect (one year risk difference of approximately

2%). Unmeasured time-stable confounding can be entirely adjusted for when time

between consecutive treatment administrations is fixed.
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Introduction

Confounding is a problem in observational studies.1 Confounding means that there are
common causes of exposure and outcome, thereby making treatment groups different
in terms of prognostic factors.2 In an ideal world, the subjects would be exchangeable.
Exchangeability means that the outcomes among the untreated, had they instead been
treated, would be similar to the outcomes of those who actually received treatment and
vice versa. Let Y z denote the outcome a subject would have got under treatment z, and
let Z denote actual treatment. Mathematically, the exchangeability assumption states that

Y z |= Z, ∀z.

Confounding prevents this property from being true and thereby challenges any
comparison between treatment groups. There are several standard ways to handle
confounding. The basic idea behind these methods is to replace the exchangeability
assumption with a conditional exchangeability assumption, that is, to assume subjects
exchangeable within strata such as sex, age, and other measured potential confounders:

Y z |= Z | X, ∀z,

where X is a set of potential confounders that are sufficient for ensuring conditional
exchangeability. Under this assumption, it is possible to proceed with the actual data
analysis in several ways, the most well-known being direct adjustment in a regression
model. Another popular solution is to use an estimated probability of treatment,
also known as a propensity score. Propensity scores are useful because conditional
exchangeability given X implies conditional exchangeability given the propensity score,

5Epidemiology, Biostatistics & Biodemography, Department of Public Health, University of Southern
Denmark, Denmark.
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Madsen et al. 3

P (Z | X). Moreover, the propensity score is the simplest transformation of X that
implies conditional exchangeability in the sense that for any other transformation of X ,
b(X), that implies conditional exchangeability we have

P (Z | X) = f(b(X))

for some function f .3 Propensity scores are used in several ways, such as matched
sampling, direct adjustment for the propensity score, or inverse probability of treatment
weighting.3 However, all of these methods rely on the existence of an observed set of
confounders that are sufficient for ensuring conditional exchangeability. Under further
assumptions, it is sometimes possible to make sensitivity analyses for the effect of
unmeasured confounding.4,5 Although this to some extent alleviates the problem with
unmeasured confounding, it relies on extra assumptions that can easily be unrealistic.
Furthermore, it might tell us that we are very sensitive to unmeasured confounding, in
which case it is hard to understand what the true effect of treatment is. Alternatively,
a self-controlled design can be applied. The basic idea in these designs is to compare
subjects to themselves. Subjects are hypothesized to be very similar to themselves, and
it is therefore argued that exchangeability is often a more reasonable assumption in these
designs. The comparison is possible because subjects are observed over time, both with
and without treatment. Thereby, it is possible to estimate whether the risk of event is
higher at times of treatment than at times without treatment. As elegantly formulated, it
changes the research question from ”why me” to ”why now”.6 Self-controlled designs
have the advantage that they automatically adjust for time-stable confounding, even
if the confounders are unobserved.7 However, they do not adjust for time-dependent
confounding, since that would make the compared time points non-exchangeable.8

Another challenge with these designs is that it is not always clear what is estimated.
Finally, each design has its own specific assumptions and challenges, such as sensitivity
to time-trends in exposure in the case-crossover design,9 or inability to handle terminal
events in the case of the self-controlled case series analysis.10 Yet another approach is
based on so-called instrumental variables. Here, the idea is to find some unconfounded
cause of treatment that has no direct effect on the outcome of interest (see Figure 1). Such
a variable is called an instrument or instrumental variable.

Note that confounding is allowed for the instrument, as long as it is measured, which
is reflected by the variable X in Figure 1. Then the association between the instrument
and outcome is used as a proxy for the effect of treatment on outcome. This association
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is unconfounded, but will be biased towards the null since the instrument doesn’t predict
the actual treatment exactly. The size of the bias depends on how strong an effect the
instrument has on treatment, also known as the strength of the instrument. Fortunately,
it is possible to estimate the bias and get an unbiased and unconfounded estimate
of the treatment effect among compliers under further assumptions through the Wald
estimator11

E(Y | I = 1)− E(Y | I = 0)

P (Z = 1 | I = 1)− P (Z = 1 | I = 0)
.

A nice example is from randomized trials, where actual treatment received may be
confounded due to some subjects not complying to the randomized treatment. Here the
instrument would be the randomized treatment and an instrumental variable analysis
where the randomized treatment is used in the statistical analysis instead of the actually
received treatment corresponds to what is known as an intention-to-treat analysis. The
main disadvantage with instrumental variables is that it can be very difficult, if not
impossible, to find a good instrument.11,12

Unmeasured confounding refers to the situation where we don’t have a set of observed
confounders that are sufficient for ensuring exchangeability. In practice, we never know
for sure whether we have such a set of confounders, although sometimes it can be argued
based on subject matter knowledge. To make matters worse, unmeasured confounding is
an issue without one generally accepted solution.13 As an example, consider confounding
by indication. In this instance, the reason for treatment, also known as the indication
for treatment, is a confounder. For example, depression might be a confounder when
studying the relationship between antidepressant drugs and suicide. A special case is
when the severity of the indication is a confounder, and not just the indication itself.14

These types of confounding are hard to adjust for since we usually don’t have good, if
any, measurements of disease severity in most available data sources.

We consider a method where we adjust for time-stable unmeasured confounding in
a flexible way that doesn’t necessitate any specific model, such as the Cox model, but
is also applicable for accelerated failure type models, for example. We consider a setup
where treatment is given under strict supervision, such that the time between consecutive
treatment administrations is constant. We do this by restricting attention to a new-user
cohort.15 Under these circumstances, time-stable confounders can only affect treatment
by affecting treatment duration through the number of treatment administrations, since
this becomes the only determinant of exposure status at different time points in this setup.
Thereby, adjusting for the number of treatment administrations effectively adjusts for all
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time-stable confounding. We proceed to show that it is possible to fully adjust for the
confounding, without further assumptions on the number of treatment administrations,
even if the number of treatment administrations is censored at the event time, such as
if the event is terminal. That is, by adjusting for an unrealized number of treatment
administrations. Furthermore, we show how this enables estimation of a causal effect
for time-to-event data despite the unmeasured time-stable confounding. We illustrate
the usefulness of the method in a simulation study. Finally, we use the methodology
to analyse the effect of treatment with selective serotonin reuptake inhibitors on the risk
of poisoning from various medications.

Notation and causal assumptions

In this section, we point out why adjusting for the number of treatment administrations
effectively adjusts for all unmeasured time-stable confounding, and how this enables
unconfounded estimation of causal effects.

The subjects are sampled at the time of first treatment, such that we have a new-user
cohort.15 The time of first treatment then becomes the start of follow-up. Treatment is
assumed to be given under strict supervision, such that the times between consecutive
treatment administrations are constant. In this case the total treatment duration, D, is
given by

D = ∆ ·W,

where ∆ is the (constant) time between consecutive treatment administrations and W is
the (random) number of treatment administrations. This corresponds to a scenario where
the doctor based on unmeasured confounders such as disease severity determines how
many treatment administrations the patient will need. Subjects are considered exposed as
long as they are receiving treatment. Hence, treatment status at time t, Z(t), is given by

Z(t) = I(t ≤ D),

where I(t ≤ D) is one until the end of treatment. By definition, a confounder affects
both treatment and outcome. Since all subjects are treated at the start of follow-up, and
since the time between consecutive treatment administrations is constant, the only way a
confounder can affect treatment is through the number of treatment administrations, W .
Denote measured confounders by X and unmeasured confounders by U . Then we can
describe our data with the Directed Acyclic Graph (DAG) in Figure 2.
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We can define counterfactual variables, T {z(t)} which are the counterfactual event
times given treatment history {z(t)}. The DAG implies the following conditional
exchangeability relation

T {z(t)} |= {Z(t)} |W.

The conditional exchangeability follows from the fact that nothing can be a time-
stable confounder without its effect on treatment going through the number of
treatment administrations in our setup. Therefore, adjusting for the number of treatment
administrations also adjusts for all time-stable confounders. In essence, we don’t care
about the number of treatment administrations per se, but they represent all time-stable
confounders at baseline, including unmeasured confounders. Thus, it is possible to fit
a model to data without confounding being a problem by adjusting for the number
of treatment administrations. In that case we might still want to include the observed
confounders, X , in the model to gain efficiency.

Often, a hazard ratio (HR) is reported as the estimate of the effect of being exposed vs.
unexposed.16 It is possible to get an unconfounded estimate of the HR by including the
number of treatment administrations as a covariate due to the conditional exchangeability,
at least assuming the Cox model is correctly specified. However, now that we have a
causal framework and even conditional exchangeability, we might want to estimate a
causal effect instead to avoid the problems with the HR.17,18

The counterfactual outcomes we wish to compare depend on the research question.
One might want to quantify the effect of treatment by comparing subjects when treated
until the end of some follow-up τ to the same subjects if they never received treatment.
Unfortunately, this is a positivity violation, since we never observe subjects without
treatment from time zero to time ∆ in a new-user cohort. Thus, we have to consider
this when defining our counterfactual outcomes. A simple solution would be to simply
compare continuing treatment until the end of follow-up and terminate treatment after
the first treatment period. For simplicity, we might term these potential outcomes T 1 and
T 0 respectively.

In any case, the causal treatment effect could simply be the average treatment effect
(ATE)

P
(
T 1 ≤ τ

)
− P

(
T 0 ≤ τ

)
, (1)

i.e., τ years risk of event, where τ is some time-frame of interest for the event. This
quantity equals

E
(
P
(
T 1 ≤ τ |W

))
− E

(
P
(
T 0 ≤ τ |W

))
, (2)
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which we can estimate due to the conditional exchangeability, for example by using the
g-formula.19 The formula in (2) may seem paradoxical. The interventional treatment in
T 0 for example, is impossible to get while also receiving for example four treatment
administrations, i.e. having W = 4. Therefore, we stress that P (T 0 ≤ τ |W = 4) is the
probability in the population of subjects who actually got four treatment administrations.
Thus, positivity doesn’t require that they get one treatment administration and four
treatment administrations at the same time, which would be impossible. The positivity
assumption in this case states that the subjects who got four treatment administrations
could have gotten for example one treatment administration with a strictly positive
probability. A positivity violation would be if the unmeasured confounders we are trying
to adjust for deterministically predict the number of treatment administrations. In order
to gain efficiency, we might be interested in using that the ATE also equals

E
(
P
(
T 1 ≤ τ |W,X

))
− E

(
P
(
T 0 ≤ τ |W,X

))
, (3)

i.e., we might want to adjust for other covariates, X . In any case, in order to use the
above methodology, we need to fit a model to the data. At first, this may seem impossible
since the number of treatment administrations a subject should have received, W , is
unobserved, for example due to a terminal event. Luckily, there is an abundance of
literature on how to handle missing covariates in, for example, the Cox model.20,21 We
propose to use the EM algorithm,22 which makes it possible to handle the missingness
without any further assumptions on the marginal distribution of W . The main challenge
in that context is if we want a causal effect from (3) since that requires estimation of the
joint distribution of X and W which is hard non-parametrically when we have censoring
in W . In the next section, we will show how to apply the EM algorithm in our setup in
order to model the data in a way that allows estimation of a causal effect.

EM algorithm

In this section, we describe the EM algorithm in our setup. The main advantage with this
approach is that we don’t have to assume anything about the marginal distribution of the
number of treatment administrations. Let T ∗ be the event time and C be the censoring
time. We observe T = min{T ∗, C} and the status indicator ∆ = I(T ∗ ≤ C), which tells
us whether the event time was observed or censored. Let W ∗ be the true number of
treatment administrations and W be the observed number of treatment administrations.
Let Ψ = I(W =W ∗) be an indicator telling us whether W ∗ is observed or censored.
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8 Statistical Methods in Medical Research XX(X)

Denote covariates by X . In the following, we will use lowercase letters to denote
realizations of the variables above. We assume we observe n iid. copies of the data
described above. Assume we can write the probability of data from subject i as

f(ti | w∗
i , xi, θ),

where θ is a vector of parameters. Normally, θ can be estimated by MLE, i.e., by
maximizing the following log-likelihood for right-censored data:

ℓ(θ) =
n∑

i=1

log
(
f(ti | w∗

i , xi, θ)
δ
i · S(ti | w∗

i , xi, θ)
1−δi

)
,

where S(ti | w∗
i , xi, θ) = P (T ∗ > t | w∗

i , xi, θ). In our case, this is not possible up front
due to the fact that w∗

i is censored for some subjects.

To ensure identification, we assume that the value of w∗
i only matters until a certain

value M , i.e.,

f(ti | w∗
i = w, xi, θ) = f(ti | w∗

i =M,xi, θ), ∀w ≥M.

In that case, we can redefine Ψ to be I(W ∗ =W ∨W ≥M). That is, we observe
enough about W for the estimation if either the end of treatment is observed or if we
observe W ∗ ≥M (see Figure 3).

Denote the probability of having W = w given X = x by pwx for w = 1, . . . ,M − 1

and the probability of W ≥M given X = x by pMx. The EM algorithm needs the
following weights for the subjects where we don’t know the true value of W ∗:

qij =P (w
∗
i = j | wi = k, ψi = 0, xi, ti, δi)

=
f(ti | w∗

i = j, xi, θ)
δiS(ti | w∗

i = j, xi, θ)
1−δi · pjxi∑M

l=k f(ti | w∗
i = l, xi, θ)δiS(ti | w∗

i = l, xi, θ)1−δi · plxi

· I(j ≥ k), j = 1, . . . ,M − 1,

qiM =P (w∗
i ≥M | wi = k, ψi = 0, xi, ti, δi)

=
f(ti | w∗

i =M,xi, θ)
δiS(ti | w∗

i =M,xi, θ)
1−δi · pMxi∑M

l=k f(ti | w∗
i = l, xi, θ)δiS(ti | w∗

i = l, xi, θ)1−δi · plxi

. (4)

This is only necessary for the subjects where we don’t know the true value of W ∗. For
observations where W ∗ is observed, the probabilities will be either 1 or 0. The weights
pwx can be estimated non-parametrically if x is discrete or if the model doesn’t use x at
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all, which would be completely legitimate since we have exchangeability conditional on
W . Then the EM algorithm is as follows:

1. Initialize θ(0), and
(
p
(0)
jx

)
j=1,...,M

, and r = 0 is the iteration number.

2. E-step: Calculate

Q =E(ℓ(θ))

=
n∑

i=1

M∑

j=1

[log(f(ti | wi = j, xi, θ)
δiS(ti | wi = j, xi, θ)

1−δi) + log(fw(j | (pkxi
)))] · q(r)ij ,

where fw is the density for W . Estimates of q(r)ij are obtained from (4) using θ(r)

and
(
p
(r)
jx

)
j=1,...,M

.

3. M-step: Maximize Q. This estimates θ(r+1) and
(
p
(r+1)
jx

)
. Set r = r + 1.

4. Repeat steps 2. and 3. until convergence.

As previously noted, the Q function is a weighted version of a complete data likelihood
due to the fact that the missingness is in a discrete covariate.23 Thus, the main coding task
is the calculation of the weights needed in the E-step. The rest can be done with standard
software implementations. Variance estimates can be obtained from the information
matrix.24 However, this is time-consuming since we have a baseline parameter for
each unique time point with an observed failure time. Thereby, the information matrix
becomes very big. Alternatively, and as we will do in the simulation study, variance
estimates can be obtained through EM-aided differentiation.25

All of the above theory works with other covariates, X . However, the estimator (3)
is hard to plug into the g-formula due to the need for the joint distribution of X and
W . For discrete X the conditional distribution W | X is estimated non-parametrically
by the EM algorithm, which enables estimation of the joint distribution of X and W as
P (W | X)P (X). Likewise, if we don’t include X in the model, the g-formula is simply

M∑

w=1

(P (T 1 ≤ τ |W = w)− P (T 0 ≤ τ |W = w)) · P (W = w).

The (asymptotic) variance of the causal effect can be estimated from the influence
function.26 However, this is challenging in the Cox model in this context when combined
with the EM algorithm, since the dimension of the variance matrix can be quite high due
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to all the baseline hazard parameters. This numerical problem is hard to solve, but valid
variance estimates can be obtained by the non-parametric bootstrap.

Simulation

We illustrate the usefulness of the method in a simulation study by simulating from the
following Cox model:

λ(t) = λ0(t) · eβ·(1−Z(t))+γ·sex · 2I(W=2) · 3I(W=3) · 4I(W≥4). (5)

Note that we estimate the effect of going from treatment to no treatment to ensure
identifiability of the baseline hazard in the first period where all subjects are treated.
As can be seen from (5), the effect of the number of treatment administrations is
capped at M = 4, the time between consecutive treatment administrations is ∆ = 100,
the baseline hazard is constantly equal to 0.0001, censoring times are constant and
equal to 1000, γ = 0, and β = − log(1.5) ≈ −0.41 in the simulations. Sex is estimated
from a Bernoulli variable with probability one half, and W is simulated from Poisson
distributions with rate equal to 3.5 for men and 1.5 for women. As discussed previously,
we recommend estimating something with a causal interpretation, but for the sake of
illustration, we will focus on the estimation of β in the following.

As discussed previously, it might be desired to fit a model without other covariates
than treatment and W in order to make it easier to estimate a causal effect. Therefore,
we also fit a Cox model without sex in the simulations. In this case the conditional
distribution of the event time given W is correctly specified because we have assumed
γ = 0. Note, however, that the estimation procedure changes since the weights no longer
are conditional on sex, but instead depends on the marginal distribution of W .

We compare the EM algorithm models to three naive analyses one might conduct
upon receiving data. The first one fits the model with treatment and sex as covariates
without adjusting for the number of treatment administrations, W , at all, which is what
we would often expect researchers to do in practice. The second analysis adjusts for
the observed W and ignores that it is sometimes censored. The third model uses the
number of treatment administrations as a time-dependent covariate with value equal to
the number of treatment administrations until time t. This would be a pure modelling
attempt at approximating the true model without using the EM algorithm. Up front, the
model makes little sense, since it essentially states that the hazard rate jumps every time
a new treatment administration takes place. We have run 10000 simulations, each with
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2000 subjects, in the statistical program R.27 The results are summarized in Table 1.
Clearly, the unadjusted analysis is biased, as we would expect given the confounding.
The adjusted model is even more biased, illustrating the importance of using the EM
algorithm to alleviate the bias. The time-dependent adjustment is still biased, but does a
decent job at approximating the true model. The EM algorithm estimates entirely without
bias, and the standard errors lead to correct coverage for both EM algorithm models,
although the one adjusting for sex has slightly higher power.

In conclusion, the proposed EM approach performs well in the considered simulation
scenario, and, in particular, avoids the systematic bias that is evident for the other
methods considered.

Data example

Here we will illustrate the method of this paper on a data example and compare
to what would be obtained if instead a Cox model was applied. The data example
is based on a population identified in the Danish healthcare registries covering the
whole population.28 National data on drug use in Denmark were extracted from the
Danish National Prescription Database.29 The Registry contains complete information,
from 1 January 1995 and onwards, on all prescriptions filled by Danish residents at
outpatient pharmacies, providing information on drug type, quantity, strength, date
of purchase, person age, and sex. Registered drugs are categorized according to the
Anatomic Therapeutic Chemical (ATC) index, a hierarchical classification system
developed by the World Health Organization (WHO) for purposes of drug use statistics.30

The quantity dispensed for each prescription is expressed by the defined daily dose
(DDD) measure, also developed by the WHO.30 The registry is reported to have a
high completeness and validity.29 The National Patient Register (for hospital contacts)
was used for identification of diagnosis of disease and procedure codes or ATC
codes. The National Patient Register contains information on persons who have been
admitted to somatic hospital departments since 1977, and from 1995 also outpatient
and emergency department patients. Individual information include admission and
discharge information, the time of any incidents over the course of an illness, diagnosis,
examinations and treatment information etc. The Danish Civil Registration System
(CPR) is a national register containing basic personal information on all who have a
civil registration number, which is used for linking the above data sources. The Danish
Civil Registration System holds a unique identifier for all Danish residents since 1968
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encoding sex and date of birth.31 Data sources were linked by the civil registry number, a
unique identifier assigned to all Danish residents since 1968.31 The study population was
defined as all residents in Denmark with a prescription of a selective serotonin reuptake
inhibitor (SSRI) since 1995, identified by the Anatomical Therapeutic Chemical (ATC)
code of N06AB*, identified within the Danish National Prescription Database. Exposure
was defined as incident use of an SSRI identified in the Danish National Prescription
Database by ATC codes N06AB* since 1995. The outcome event was defined as
the first-ever diagnosis of a range of specific conditions identified by ICD-10 codes
T39* to T49* in the National Patient Register. These ICD-10 codes include poisoning
by various medications.32 Both the ATC (used to categorize drugs) and the ICD-10
(used to categorize diagnoses) are hierarchical classification systems. By considering
an increasing number of digits of the code, increasing precision in terms of detail is
achieved. For example, N06A indicates the ATC code for all antidepressants, N06AB for
all SSRIs and N06AB06 for the specific drug Sertraline.

SSRI medication is used for treating depression and anxiety. This is a situation where
we would expect a lot of confounding by indication that is hard to adjust for. Furthermore,
these treatments are prescribed with regular intervals of approximately 50 days. Thus, the
methodology of this paper is applicable here.

Our sample size is 36122. Before making the actual data analysis, we need to decide
what value we want to cap the effect of W at. We do this by inspecting the distribution
of W in the data in Table 2 along with the censoring pattern of W . We see a decreasing
distribution with most subjects having few treatment administrations. We choose to cap
the effect of W at M = 4, which should give us a censoring indicator for W of one for
most observations but should still allow us to adjust for some confounding.

We compare a Cox model of the form

λ(t) = λ0(t) · exp(β1 · Z(t) + β2 · sex),

to an EM algorithm that only includes the number of treatment administrations, W , as a
categorical variable, and treatment, which is written as 1− Z(t) for identification of the
baseline in the first period. Note, that sex could have been included in the EM algorithm
as well, but the estimation and the g-formula would have been more complicated.
Standard Errors (SE) and p-values are obtained from the non-parametric bootstrap. We
compare the following two treatment regimes

• Treated the entire year.
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• Treated for fifty days, and then not the rest of the year.

For brevity we will term these ”always treated” and ”never treated” in the following. We
compare these treatment regimes in terms of the one-year risk difference of experiencing
an event.

The results are summarized in Table 3. As displayed in Table 3, the Cox model shows
an increased risk among the always treated, which is highly significant, as we would
expect given the confounding. The EM algorithm shows the exact opposite, namely a
protective effect of treatment, which reflects our intuition about the true causal nature
of data better. This is also highly significant. Therefore, one should also consider the
clinical relevance of going from a 20% risk to 17%. However, a protective (side-)effect
is positive in any case.

Discussion

Unmeasured time-stable confounding can be fully adjusted for in a new-user cohort when
the time between treatment administrations is fixed by including the number of treatment
administrations as a covariate. Adjusting for the number of treatment administrations
ensures conditional exchangeability because the only way a time-stable confounder can
affect treatment status is by changing the number of treatment administrations in this
particular setup. If the number of treatment administrations is censored at the event time,
for example if the event is terminal, the EM algorithm can be employed without further
assumptions on the number of treatment administrations. This is not restricted to any
specific type of model, such as the Cox model, but works for any model where parameters
are estimated with MLE. The choice of causal target parameter has to reflect that we are
dealing with a new-user cohort, and the g-formula has to handle the censoring in the
number of treatment administrations, for example by excluding other covariates.

One might argue that the regression model in (5) is overly restrictive. Why not, for
example, stratify on W ? It turns out stratifying on W would make it impossible to
identify the effect of interest. This is due to the fact that we can’t identify the baseline
hazard for W > 1 in the first period, since we never observe W and have an event in
the first period at the same time. Thereby, all the probability mass for the weights among
subjects with an event in the first period would be distributed toW = 1. Similar problems
arise in the other periods, particularly if the event time has a continuous distribution, in
which case the baseline hazards will almost surely put probability mass at different time
points. Thus, we are more or less guaranteed to estimate the distribution ofW incorrectly.
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A limitation of the methodology described in this paper is when the confounding
is time-dependent. For example, if disease severity changes over time, and this time-
dependent severity determines treatment status, then the method will lead to a biased
estimate of the treatment effect. This limitation is shared by all self-controlled designs.7

It can be argued that the methodology in this paper would be conditioning on the future in
that case, since the number of treatment administrations would be determined by future
confounders.

An important extension of the methodology would be to enable the use of models
estimated differently than MLE, such as inverse probability of censoring weighted
methods.33 Thereby, it would be possible to use the methodology with any classification
model, such as logistic regression or random forests.

Nevertheless, it is possible to adjust for unmeasured time-stable confounding in a new-
user cohort when treatment duration is fixed with standard models.

Software

R code for simulations, and the simulation results are available at https://github.
com/Jeepen/em.
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I Z
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Figure 1. DAG for the instrumental variable setup. I is the instrument, Z is the exposure, U
is a set of unmeasured confounders, X is a set of measured confounders, and Y is the
outcome.

X

UW

{Z(t)}
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Figure 2. DAG of the setup. U is unobserved, but any confounding effect on treatment, Z(t),
and outcome, T , goes through the number of treatment administrations, W. Other confouders,
X, can be adjusted for explicitly, although this is not necessary to get an unconfounded
estimate of the effect of exposure.
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Figure 3. In scenario number one, we know the number of treatment administrations
because treatment has been terminated. In scenario two, we don’t know the number of
treatment administrations because the subject is still under treatment at the time of the event.
In scenario three, we don’t know the number of treatment administrations, but if the effect is
capped at M = 4, then we do know that the number of treatment administrations is greater
than or equal to four, which enables identification of the model.

Table 1. Results from simulation. Relative bias is bias / SD. SD is empirical standard
deviation of estimates and Avg. SE is the average estimated SE from the simulations.

Model Bias Relative bias SD Avg. SE CI Coverage

No adjustment −0.43 −3.34 0.129 0.132 0.088

Adjusted analysis −1.23 −6.77 0.182 0.156 0.000

Time-dependent adjustment −0.04 −0.28 0.151 0.152 0.941

EM algorithm with sex 0.00 −0.01 0.160 0.157 0.945

EM algorithm without sex 0.00 −0.01 0.163 0.159 0.942
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Table 2. The table shows the observed values of W along with the censoring pattern. Note
that values of W > 10 are observed but have been excluded from the table in the interest of
space.

W Censored Observed

1 2436 3047
2 1320 2017
3 821 1640
4 631 1398
5 408 1304
6 293 1174
7 201 1052
8 134 924
9 99 847

10 65 824

Table 3. Estimated one-year risk difference of poisoning for new users of antidepressant
medicine.

Risk always treated Risk never treated Risk difference (95% CI) p-value

Cox 19.3% 17.3% 1.9% (1.2%, 2.6%) < 0.001

EM 16.7% 19.7% −3.0% (−3.7%, −2.2%) < 0.001
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